Remark 90.19.4. Assume \mathcal{F} is a predeformation category. Then
for x_0 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(k)) the automorphism group \text{Aut}_ k(x_0) is trivial and hence \text{Inf}_{x_0}(\mathcal{F}) = \text{Aut}_{k[\epsilon ]}(x'_0), and
for x_0, y_0 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(k)) there is a unique isomorphism x_0 \to y_0 and hence a canonical identification \text{Inf}_{x_0}(\mathcal{F}) = \text{Inf}_{y_0}(\mathcal{F}).
Since \mathcal{F}(k) is nonempty, choosing x_0 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(k)) and setting
we get a well defined group of infinitesimal automorphisms of \mathcal{F}. With this notation we have \text{Inf}(\mathcal{F}_{x_0}) = \text{Inf}_{x_0}(\mathcal{F}). Please compare with the equality T\mathcal{F}_{x_0} = T_{x_0}\mathcal{F} in Remark 90.12.5.
Comments (0)