The Stacks project

Lemma 89.19.11. Let $\mathcal{F}$ be a category cofibered in groupoids over $\mathcal{C}_\Lambda $ satisfying (RS). Let $x' \to x$ be a morphism lying over a surjective ring map $A' \to A$ with kernel $I$ annihilated by $\mathfrak m_{A'}$. Let $x_0$ be a pushforward of $x$ to $\mathcal{F}(k)$. Then $\text{Inf}(x'/x)$ has a free and transitive action by $T_{\text{id}_{x_0}} \mathit{Aut}(x') \otimes _ k I = \text{Inf}_{x_0}(\mathcal{F}) \otimes _ k I$.

Proof. This is just the analogue of Lemma 89.17.5 in the setting of automorphism sheaves. To be precise, we apply Remark 89.6.4 to the functor $\mathit{Aut}(x') : \mathcal{C}_{A'} \to \textit{Sets}$ and the element $\text{id}_{x_0} \in \mathit{Aut}(x)(k)$ to get a predeformation functor $F = \mathit{Aut}(x')_{\text{id}_{x_0}}$. By Lemmas 89.19.6 and 89.16.11 $F$ is a deformation functor. Hence Lemma 89.17.5 gives a free and transitive action of $TF \otimes _ k I$ on $\text{Lift}(\text{id}_ x, A')$, because as $\text{Lift}(\text{id}_ x, A')$ is a group it is always nonempty. Note that we have equalities of vector spaces

\[ TF = T_{\text{id}_{x_0}} \mathit{Aut}(x') \otimes _ k I = \text{Inf}_{x_0}(\mathcal{F}) \otimes _ k I \]

by Lemma 89.19.7. The equality $\text{Inf}(x'/x) = \text{Lift}(\text{id}_ x, A')$ of Remark 89.19.8 finishes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06JY. Beware of the difference between the letter 'O' and the digit '0'.