Lemma 90.27.5. Let $(U, R, s, t, c)$ and $(U', R', s', t', c')$ be minimal smooth prorepresentable groupoids in functors on $\mathcal{C}_\Lambda $. If $\varphi : [U/R] \to [U'/R']$ is an equivalence of categories cofibered in groupoids, then $\varphi $ is an isomorphism.
Proof. Let $\psi : [U'/R'] \to [U/R]$ be a quasi-inverse to $\varphi $. Then $\psi \circ \varphi $ and $\varphi \circ \psi $ are isomorphisms by Lemma 90.27.4, hence $\varphi $ and $\psi $ are isomorphisms. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)