The Stacks project

Lemma 90.27.7. Let $\mathcal{F}$ be category cofibered in groupoids over $\mathcal{C}_\Lambda $. Assume there exist presentations of $\mathcal{F}$ by minimal smooth prorepresentable groupoids in functors $(U, R, s, t, c)$ and $(U', R', s', t', c')$. Then $(U, R, s, t, c)$ and $(U', R', s', t', c')$ are isomorphic.

Proof. Follows from Lemma 90.27.5 and the observation that a morphism $[U/R] \to [U'/R']$ is the same thing as a morphism of groupoids in functors (by our explicit construction of $[U/R]$ in Definition 90.21.9). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06L3. Beware of the difference between the letter 'O' and the digit '0'.