**Proof.**
Cases (2) and (3) follow immediately from case (1) but we will give a separate proofs of (2) and (3) as these proofs use significantly less theory.

Proof of (3). Let $U$ be an affine scheme and let $U \to X$ be an étale morphism. Set $R = U \times _ X U$. The two projection morphisms $s, t : R \to U$ are étale morphisms of schemes. By Properties of Spaces, Definition 63.9.2 we see that $\dim (U) = 0$ and $\dim (R) = 0$. Since $R$ is a locally Noetherian scheme of dimension $0$, we see that $R$ is a disjoint union of spectra of Artinian local rings (Properties, Lemma 28.10.5). Since we assumed that $X$ is Noetherian (so quasi-separated) we conclude that $R$ is quasi-compact. Hence $R$ is an affine scheme (use Schemes, Lemma 26.6.8). The étale morphisms $s, t : R \to U$ induce finite residue field extensions. Hence $s$ and $t$ are finite by Algebra, Lemma 10.53.4 (small detail omitted). Thus Groupoids, Proposition 39.23.9 shows that $X = U/R$ is an affine scheme.

Proof of (2) – almost identical to the proof of (4). Let $U$ be an affine scheme and let $U \to X$ be an étale morphism. Set $R = U \times _ X U$. The two projection morphisms $s, t : R \to U$ are étale morphisms of schemes. By Properties of Spaces, Definition 63.9.2 we see that $\dim (U) = 0$ and similarly $\dim (R) = 0$. On the other hand, the morphism $U \to \mathop{\mathrm{Spec}}(k)$ is locally of finite type as the composition of the étale morphism $U \to X$ and $X \to \mathop{\mathrm{Spec}}(k)$, see Morphisms of Spaces, Lemmas 64.23.2 and 64.39.9. Similarly, $R \to \mathop{\mathrm{Spec}}(k)$ is locally of finite type. Hence by Varieties, Lemma 33.20.2 we see that $U$ and $R$ are disjoint unions of spectra of local Artinian $k$-algebras finite over $k$. The same thing is therefore true of $U \times _{\mathop{\mathrm{Spec}}(k)} U$. As

\[ R = U \times _ X U \longrightarrow U \times _{\mathop{\mathrm{Spec}}(k)} U \]

is a monomorphism, we see that $R$ is a finite(!) union of spectra of finite $k$-algebras. It follows that $R$ is affine, see Schemes, Lemma 26.6.8. Applying Varieties, Lemma 33.20.2 once more we see that $R$ is finite over $k$. Hence $s, t$ are finite, see Morphisms, Lemma 29.42.14. Thus Groupoids, Proposition 39.23.9 shows that the open subspace $U/R$ of $X$ is an affine scheme. Since the schematic locus of $X$ is an open subspace (see Properties of Spaces, Lemma 63.13.1), and since $U \to X$ was an arbitrary étale morphism from an affine scheme we conclude that $X$ is a scheme.

Proof of (1). By Cohomology of Spaces, Lemma 66.10.1 we have vanishing of higher cohomology groups for all quasi-coherent sheaves $\mathcal{F}$ on $X$. Hence $X$ is affine (in particular a scheme) by Cohomology of Spaces, Proposition 66.16.7.
$\square$

## Comments (2)

Comment #261 by Pieter Belmans on

Comment #263 by Johan on