Lemma 100.28.15. Let $\mathcal{X}$ be an algebraic stack. If $\mathcal{X}$ is a gerbe then for every $x \in |\mathcal{X}|$ the residual gerbe of $\mathcal{X}$ at $x$ exists.
Proof. Let $\pi : \mathcal{X} \to X$ be a morphism from $\mathcal{X}$ into an algebraic space $X$ which turns $\mathcal{X}$ into a gerbe over $X$. Let $Z_ x \to X$ be the residual space of $X$ at $x$, see Decent Spaces, Definition 67.13.6. Let $\mathcal{Z} = \mathcal{X} \times _ X Z_ x$. By Lemma 100.28.3 the algebraic stack $\mathcal{Z}$ is a gerbe over $Z_ x$. Hence $|\mathcal{Z}| = |Z_ x|$ (Lemma 100.28.13) is a singleton. Since $\mathcal{Z} \to Z_ x$ is locally of finite presentation as a base change of $\pi $ (see Lemmas 100.28.8 and 100.27.3) we see that $\mathcal{Z}$ is locally Noetherian, see Lemma 100.17.5. Thus the residual gerbe $\mathcal{Z}_ x$ of $\mathcal{X}$ at $x$ exists and is equal to $\mathcal{Z}_ x = \mathcal{Z}_{red}$ the reduction of the algebraic stack $\mathcal{Z}$. Namely, we have seen above that $|\mathcal{Z}_{red}|$ is a singleton mapping to $x \in |\mathcal{X}|$, it is reduced by construction, and it is locally Noetherian (as the reduction of a locally Noetherian algebraic stack is locally Noetherian, details omitted). $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: