The Stacks project

Lemma 90.4.8. Let $\ldots \to A_3 \to A_2 \to A_1$ be a sequence of surjective ring maps in $\mathcal{C}_\Lambda $. If $\dim _ k (\mathfrak m_{A_ n}/\mathfrak m_{A_ n}^2)$ is bounded, then $S = \mathop{\mathrm{lim}}\nolimits A_ n$ is an object in $\widehat{\mathcal{C}}_\Lambda $ and the ideals $I_ n = \mathop{\mathrm{Ker}}(S \to A_ n)$ define the $\mathfrak m_ S$-adic topology on $S$.

Proof. We will use freely that the maps $S \to A_ n$ are surjective for all $n$. Note that the maps $\mathfrak m_{A_{n + 1}}/\mathfrak m_{A_{n + 1}}^2 \to \mathfrak m_{A_ n}/\mathfrak m_{A_ n}^2$ are surjective, see Lemma 90.4.2. Hence for $n$ sufficiently large the dimension $\dim _ k (\mathfrak m_{A_ n}/\mathfrak m_{A_ n}^2)$ stabilizes to an integer, say $r$. Thus we can find $x_1, \ldots , x_ r \in \mathfrak m_ S$ whose images in $A_ n$ generate $\mathfrak m_{A_ n}$. Moreover, pick $y_1, \ldots , y_ t \in S$ whose images in $k$ generate $k$ over $\Lambda $. Then we get a ring map $P = \Lambda [z_1, \ldots , z_{r + t}] \to S$, $z_ i \mapsto x_ i$ and $z_{r + j} \mapsto y_ j$ such that the composition $P \to S \to A_ n$ is surjective for all $n$. Let $\mathfrak m \subset P$ be the kernel of $P \to k$. Let $R = P^\wedge $ be the $\mathfrak m$-adic completion of $P$; this is an object of $\widehat{\mathcal{C}}_\Lambda $. Since we still have the compatible system of (surjective) maps $R \to A_ n$ we get a map $R \to S$. Set $J_ n = \mathop{\mathrm{Ker}}(R \to A_ n)$. Set $J = \bigcap J_ n$. By Lemma 90.4.7 we see that $R/J = \mathop{\mathrm{lim}}\nolimits R/J_ n = \mathop{\mathrm{lim}}\nolimits A_ n = S$ and that the ideals $J_ n/J = I_ n$ define the $\mathfrak m$-adic topology. (Note that for each $n$ we have $\mathfrak m_ R^{N_ n} \subset J_ n$ for some $N_ n$ and not necessarily $N_ n = n$, so a renumbering of the ideals $J_ n$ may be necessary before applying the lemma.) $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06SF. Beware of the difference between the letter 'O' and the digit '0'.