Lemma 96.6.2. Let f : \mathcal{X} \to \mathcal{Y} be a 1-morphism of categories fibred in groupoids over (\mathit{Sch}/S)_{fppf}. Let \tau \in \{ Zar, {\acute{e}tale}, smooth, syntomic, fppf\} . There is a canonical identification f^{-1}\mathcal{O}_\mathcal {Y} = \mathcal{O}_\mathcal {X} which turns f : \mathop{\mathit{Sh}}\nolimits (\mathcal{X}_\tau ) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{Y}_\tau ) into a morphism of ringed topoi.
Proof. Denote p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf} and q : \mathcal{Y} \to (\mathit{Sch}/S)_{fppf} the structural functors. Then p = q \circ f, hence p^{-1} = f^{-1} \circ q^{-1} by Lemma 96.3.2. Since \mathcal{O}_\mathcal {X} = p^{-1}\mathcal{O} and \mathcal{O}_\mathcal {Y} = q^{-1}\mathcal{O} the result follows. \square
Comments (0)
There are also: