The Stacks project

The cokernel of a map of adequate functors on the category of algebras over a ring is adequate.

Lemma 46.3.10. Let $A$ be a ring. Let $\varphi : F \to G$ be a map of adequate functors on $\textit{Alg}_ A$. Then $\mathop{\mathrm{Coker}}(\varphi )$ is adequate.

Proof. Choose an injection $G \to \underline{M}$. Then we have an injection $G/F \to \underline{M}/F$. By Lemma 46.3.9 we see that $\underline{M}/F$ is adequate, hence we can find an injection $\underline{M}/F \to \underline{N}$. Composing we obtain an injection $G/F \to \underline{N}$. By Lemma 46.3.9 the cokernel of the induced map $G \to \underline{N}$ is adequate hence we can find an injection $\underline{N}/G \to \underline{K}$. Then $0 \to G/F \to \underline{N} \to \underline{K}$ is exact and we win. $\square$


Comments (1)

Comment #879 by on

Suggested slogan: The cokernel of a map of adequate functors on the category of algebras over a ring is adequate.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06V2. Beware of the difference between the letter 'O' and the digit '0'.