Lemma 46.3.11. Let $A$ be a ring. Let $\varphi : F \to G$ be a map of adequate functors on $\textit{Alg}_ A$. Then $\mathop{\mathrm{Ker}}(\varphi )$ is adequate.

**Proof.**
Choose an injection $F \to \underline{M}$ and an injection $G \to \underline{N}$. Denote $F \to \underline{M \oplus N}$ the diagonal map so that

commutes. By Lemma 46.3.10 we can find a module map $M \oplus N \to K$ such that $F$ is the kernel of $\underline{M \oplus N} \to \underline{K}$. Then $\mathop{\mathrm{Ker}}(\varphi )$ is the kernel of $\underline{M \oplus N} \to \underline{K \oplus N}$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)