Definition 13.27.1. Let $\mathcal{A}$ be an abelian category. Let $i \in \mathbf{Z}$. Let $X, Y$ be objects of $D(\mathcal{A})$. The *$i$th extension group* of $X$ by $Y$ is the group

If $A, B \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ we set $\mathop{\mathrm{Ext}}\nolimits ^ i_\mathcal {A}(A, B) = \text{Ext}^ i_\mathcal {A}(A[0], B[0])$.

## Comments (0)