Definition 13.27.1. Let \mathcal{A} be an abelian category. Let i \in \mathbf{Z}. Let X, Y be objects of D(\mathcal{A}). The ith extension group of X by Y is the group
\mathop{\mathrm{Ext}}\nolimits ^ i_\mathcal {A}(X, Y) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A})}(X, Y[i]) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A})}(X[-i], Y).
If A, B \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}) we set \mathop{\mathrm{Ext}}\nolimits ^ i_\mathcal {A}(A, B) = \text{Ext}^ i_\mathcal {A}(A[0], B[0]).
Comments (4)
Comment #8785 by Elías Guisado on
Comment #8829 by Elías Guisado on
Comment #9257 by Stacks project on
Comment #10005 by Elías Guisado on