Lemma 21.12.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Consider the functor $i : \textit{Mod}(\mathcal{C}) \to \textit{PMod}(\mathcal{C})$. It is a left exact functor with right derived functors given by
see discussion in Section 21.7.
Lemma 21.12.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Consider the functor $i : \textit{Mod}(\mathcal{C}) \to \textit{PMod}(\mathcal{C})$. It is a left exact functor with right derived functors given by
see discussion in Section 21.7.
Proof. It is clear that $i$ is left exact. Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet $ in $\textit{Mod}(\mathcal{O})$. By definition $R^ pi$ is the $p$th cohomology presheaf of the complex $\mathcal{I}^\bullet $. In other words, the sections of $R^ pi(\mathcal{F})$ over an object $U$ of $\mathcal{C}$ are given by
which is the definition of $H^ p(U, \mathcal{F})$. $\square$
Comments (0)