Lemma 21.12.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ be a covering of $\mathcal{C}$. Let $\mathcal{I}$ be an injective $\mathcal{O}$-module, i.e., an injective object of $\textit{Mod}(\mathcal{O})$. Then
Proof. Lemma 21.9.3 gives the first equality in the following sequence of equalities
The third equality by Modules on Sites, Lemma 18.9.2. By Lemma 21.12.1 we see that $\mathcal{I}$ is an injective object in $\textit{PMod}(\mathcal{O})$. Hence $\mathop{\mathrm{Hom}}\nolimits _{\textit{PMod}(\mathcal{O})}(-, \mathcal{I})$ is an exact functor. By Lemma 21.9.5 we see the vanishing of higher Čech cohomology groups. For the zeroth see Lemma 21.8.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)