The Stacks project

Lemma 21.10.3. Let $\mathcal{C}$ be a category. Let $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ be a family of morphisms with fixed target such that all fibre products $U_{i_0} \times _ U \ldots \times _ U U_{i_ p}$ exist in $\mathcal{C}$. Consider the chain complex $\mathbf{Z}_{\mathcal{U}, \bullet }$ of abelian presheaves

\[ \ldots \to \bigoplus _{i_0i_1i_2} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1} \times _ U U_{i_2}} \to \bigoplus _{i_0i_1} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1}} \to \bigoplus _{i_0} \mathbf{Z}_{U_{i_0}} \to 0 \to \ldots \]

where the last nonzero term is placed in degree $0$ and where the map

\[ \mathbf{Z}_{U_{i_0} \times _ U \ldots \times _ u U_{i_{p + 1}}} \longrightarrow \mathbf{Z}_{U_{i_0} \times _ U \ldots \widehat{U_{i_ j}} \ldots \times _ U U_{i_{p + 1}}} \]

is given by $(-1)^ j$ times the canonical map. Then there is an isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_{\mathcal{U}, \bullet }, \mathcal{F}) = \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}) \]

functorial in $\mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\textit{PAb}(\mathcal{C}))$.

Proof. This is a tautology based on the fact that

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}( \bigoplus _{i_0 \ldots i_ p} \mathbf{Z}_{U_{i_0} \times _ U \ldots \times _ U U_{i_ p}}, \mathcal{F}) & = \prod _{i_0 \ldots i_ p} \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}( \mathbf{Z}_{U_{i_0} \times _ U \ldots \times _ U U_{i_ p}}, \mathcal{F}) \\ & = \prod _{i_0 \ldots i_ p} \mathcal{F}(U_{i_0} \times _ U \ldots \times _ U U_{i_ p}) \end{align*}

see Modules on Sites, Lemma 18.4.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03AS. Beware of the difference between the letter 'O' and the digit '0'.