Lemma 21.9.3. Let \mathcal{C} be a category. Let \mathcal{U} = \{ U_ i \to U\} _{i \in I} be a family of morphisms with fixed target such that all fibre products U_{i_0} \times _ U \ldots \times _ U U_{i_ p} exist in \mathcal{C}. Consider the chain complex \mathbf{Z}_{\mathcal{U}, \bullet } of abelian presheaves
\ldots \to \bigoplus _{i_0i_1i_2} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1} \times _ U U_{i_2}} \to \bigoplus _{i_0i_1} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1}} \to \bigoplus _{i_0} \mathbf{Z}_{U_{i_0}} \to 0 \to \ldots
where the last nonzero term is placed in degree 0 and where the map
\mathbf{Z}_{U_{i_0} \times _ U \ldots \times _ u U_{i_{p + 1}}} \longrightarrow \mathbf{Z}_{U_{i_0} \times _ U \ldots \widehat{U_{i_ j}} \ldots \times _ U U_{i_{p + 1}}}
is given by (-1)^ j times the canonical map. Then there is an isomorphism
\mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_{\mathcal{U}, \bullet }, \mathcal{F}) = \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})
functorial in \mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\textit{PAb}(\mathcal{C})).
Proof.
This is a tautology based on the fact that
\begin{align*} \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}( \bigoplus _{i_0 \ldots i_ p} \mathbf{Z}_{U_{i_0} \times _ U \ldots \times _ U U_{i_ p}}, \mathcal{F}) & = \prod _{i_0 \ldots i_ p} \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}( \mathbf{Z}_{U_{i_0} \times _ U \ldots \times _ U U_{i_ p}}, \mathcal{F}) \\ & = \prod _{i_0 \ldots i_ p} \mathcal{F}(U_{i_0} \times _ U \ldots \times _ U U_{i_ p}) \end{align*}
see Modules on Sites, Lemma 18.4.2.
\square
Comments (0)