Lemma 21.9.2. Let \mathcal{C} be a category. Let \mathcal{U} = \{ U_ i \to U\} _{i \in I} be a family of morphisms with fixed target such that all fibre products U_{i_0} \times _ U \ldots \times _ U U_{i_ p} exist in \mathcal{C}. The functors \mathcal{F} \mapsto \check{H}^ n(\mathcal{U}, \mathcal{F}) form a \delta -functor from the abelian category \textit{PAb}(\mathcal{C}) to the category of \mathbf{Z}-modules (see Homology, Definition 12.12.1).
Proof. By Lemma 21.9.1 a short exact sequence of abelian presheaves 0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 is turned into a short exact sequence of complexes of \mathbf{Z}-modules. Hence we can use Homology, Lemma 12.13.12 to get the boundary maps \delta _{\mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3} : \check{H}^ n(\mathcal{U}, \mathcal{F}_3) \to \check{H}^{n + 1}(\mathcal{U}, \mathcal{F}_1) and a corresponding long exact sequence. We omit the verification that these maps are compatible with maps between short exact sequences of presheaves. \square
Comments (0)