Proposition 94.20.1. Let $f : \mathcal{U} \to \mathcal{X}$ and $g : \mathcal{X} \to \mathcal{Y}$ be composable $1$-morphisms of algebraic stacks.

1. Assume that $f$ is representable by algebraic spaces, surjective and smooth.

1. If $\mathcal{F}$ is in $\textit{Ab}(\mathcal{X}_{\acute{e}tale})$ then there is a spectral sequence

$E_1^{p, q} = R^ q(g \circ f_ p)_*f_ p^{-1}\mathcal{F} \Rightarrow R^{p + q}g_*\mathcal{F}$

in $\textit{Ab}(\mathcal{Y}_{\acute{e}tale})$ with higher direct images computed in the étale topology.

2. If $\mathcal{F}$ is in $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$ then there is a spectral sequence

$E_1^{p, q} = R^ q(g \circ f_ p)_*f_ p^{-1}\mathcal{F} \Rightarrow R^{p + q}g_*\mathcal{F}$

in $\textit{Mod}(\mathcal{Y}_{\acute{e}tale}, \mathcal{O}_\mathcal {Y})$.

2. Assume that $f$ is representable by algebraic spaces, surjective, flat, and locally of finite presentation.

1. If $\mathcal{F}$ is in $\textit{Ab}(\mathcal{X})$ then there is a spectral sequence

$E_1^{p, q} = R^ q(g \circ f_ p)_*f_ p^{-1}\mathcal{F} \Rightarrow R^{p + q}g_*\mathcal{F}$

in $\textit{Ab}(\mathcal{Y})$ with higher direct images computed in the fppf topology.

2. If $\mathcal{F}$ is in $\textit{Mod}(\mathcal{O}_\mathcal {X})$ then there is a spectral sequence

$E_1^{p, q} = R^ q(g \circ f_ p)_*f_ p^{-1}\mathcal{F} \Rightarrow R^{p + q}g_*\mathcal{F}$

in $\textit{Mod}(\mathcal{O}_\mathcal {Y})$.

Proof. To see this we will check the hypotheses (1) – (4) of Lemma 94.18.11 and Lemma 94.18.12. The $1$-morphism $f$ is faithful by Algebraic Stacks, Lemma 92.15.2. This proves (4). Hypothesis (3) follows from the fact that $\mathcal{U}$ is an algebraic stack, see Lemma 94.16.2. To see (2) apply Lemma 94.18.10. Condition (1) is satisfied by fiat in all four cases. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).