Lemma 104.5.3. Let \mathcal{X} be an algebraic stack. Set \mathcal{P}_\mathcal {X} = \textit{Parasitic}(\mathcal{O}_\mathcal {X}) \cap \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X}).
Let \mathcal{F}^\bullet be an object of D_{\textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X})} (\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X}). With g as in Cohomology of Stacks, Lemma 103.14.2 for the lisse-étale site we have
g^*\mathcal{F}^\bullet is in D_\mathit{QCoh}(\mathcal{O}_{\mathcal{X}_{lisse,{\acute{e}tale}}}),
g^*\mathcal{F}^\bullet = 0 if and only if \mathcal{F}^\bullet is in D_{\mathcal{P}_\mathcal {X}}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X}),
Lg_!\mathcal{H}^\bullet is in D_{\textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X})}( \mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X}) for \mathcal{H}^\bullet in D_\mathit{QCoh}(\mathcal{O}_{\mathcal{X}_{lisse,{\acute{e}tale}}}), and
the functors g^* and Lg_! define mutually inverse functors
\xymatrix{ D_\mathit{QCoh}(\mathcal{O}_\mathcal {X}) \ar@<1ex>[r]^-{g^*} & D_\mathit{QCoh}(\mathcal{O}_{\mathcal{X}_{lisse,{\acute{e}tale}}}) \ar@<1ex>[l]^-{Lg_!} }
Let \mathcal{F}^\bullet be an object of D_{\textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {X}). With g as in Cohomology of Stacks, Lemma 103.14.2 for the flat-fppf site we have
g^*\mathcal{F}^\bullet is in D_\mathit{QCoh}(\mathcal{O}_{\mathcal{X}_{flat, fppf}}),
g^*\mathcal{F}^\bullet = 0 if and only if \mathcal{F}^\bullet is in D_{\mathcal{P}_\mathcal {X}}(\mathcal{O}_\mathcal {X}),
Lg_!\mathcal{H}^\bullet is in D_{\textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {X}) for \mathcal{H}^\bullet in D_\mathit{QCoh}(\mathcal{O}_{\mathcal{X}_{flat,fppf}}), and
the functors g^* and Lg_! define mutually inverse functors
\xymatrix{ D_\mathit{QCoh}(\mathcal{O}_\mathcal {X}) \ar@<1ex>[r]^-{g^*} & D_\mathit{QCoh}(\mathcal{O}_{\mathcal{X}_{flat,fppf}}) \ar@<1ex>[l]^-{Lg_!} }
Comments (2)
Comment #1148 by Olaf Schnürer on
Comment #1169 by Johan on