Proposition 102.5.1. Let $f : \mathcal{X} \to \mathcal{Y}$ be a quasi-compact and quasi-separated morphism of algebraic stacks. The functor $Rf_*$ induces a commutative diagram

\[ \xymatrix{ D^{+}_{\mathcal{P}_\mathcal {X}}(\mathcal{O}_\mathcal {X}) \ar[r] \ar[d]^{Rf_*} & D^{+}_{\mathcal{M}_\mathcal {X}}(\mathcal{O}_\mathcal {X}) \ar[r] \ar[d]^{Rf_*} & D(\mathcal{O}_\mathcal {X}) \ar[d]^{Rf_*} \\ D^{+}_{\mathcal{P}_\mathcal {Y}}(\mathcal{O}_\mathcal {Y}) \ar[r] & D^{+}_{\mathcal{M}_\mathcal {Y}}(\mathcal{O}_\mathcal {Y}) \ar[r] & D(\mathcal{O}_\mathcal {Y}) } \]

and hence induces a functor

\[ Rf_{\mathit{QCoh}, *} : D^{+}_\mathit{QCoh}(\mathcal{O}_\mathcal {X}) \longrightarrow D^{+}_\mathit{QCoh}(\mathcal{O}_\mathcal {Y}) \]

on quotient categories. Moreover, the functor $R^ if_\mathit{QCoh}$ of Cohomology of Stacks, Proposition 101.10.1 are equal to $H^ i \circ Rf_{\mathit{QCoh}, *}$ with $H^ i$ as in (102.4.1.1).

**Proof.**
We have to show that $Rf_*E$ is an object of $D^{+}_{\mathcal{M}_\mathcal {Y}}(\mathcal{O}_\mathcal {Y})$ for $E$ in $D^{+}_{\mathcal{M}_\mathcal {X}}(\mathcal{O}_\mathcal {X})$. This follows from Cohomology of Stacks, Proposition 101.7.4 and the spectral sequence $R^ if_*H^ j(E) \Rightarrow R^{i + j}f_*E$. The case of parasitic modules works the same way using Cohomology of Stacks, Lemma 101.8.3. The final statement is clear from the definition of $H^ i$ in (102.4.1.1).
$\square$

## Comments (0)