The Stacks project

Proposition 103.11.1. Let $f : \mathcal{X} \to \mathcal{Y}$ be a quasi-compact and quasi-separated morphism of algebraic stacks. The functor $f^* : \mathit{QCoh}(\mathcal{O}_\mathcal {Y}) \to \mathit{QCoh}(\mathcal{O}_\mathcal {X})$ has a right adjoint

\[ f_{\mathit{QCoh}, *} : \mathit{QCoh}(\mathcal{O}_\mathcal {X}) \longrightarrow \mathit{QCoh}(\mathcal{O}_\mathcal {Y}) \]

which can be defined as the composition

\[ \mathit{QCoh}(\mathcal{O}_\mathcal {X}) \to \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X}) \xrightarrow {f_*} \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {Y}) \xrightarrow {Q} \mathit{QCoh}(\mathcal{O}_\mathcal {Y}) \]

where the functors $f_*$ and $Q$ are as in Proposition 103.8.1 and Lemma 103.10.1. Moreover, if we define $R^ if_{\mathit{QCoh}, *}$ as the composition

\[ \mathit{QCoh}(\mathcal{O}_\mathcal {X}) \to \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X}) \xrightarrow {R^ if_*} \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {Y}) \xrightarrow {Q} \mathit{QCoh}(\mathcal{O}_\mathcal {Y}) \]

then the sequence of functors $\{ R^ if_{\mathit{QCoh}, *}\} _{i \geq 0}$ forms a cohomological $\delta $-functor.

Proof. This is a combination of the results mentioned in the statement. The adjointness can be shown as follows: Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_\mathcal {X}$-module and let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}_\mathcal {Y}$-module. Then we have

\begin{align*} \mathop{\mathrm{Mor}}\nolimits _{\mathit{QCoh}(\mathcal{O}_\mathcal {X})}(f^*\mathcal{G}, \mathcal{F}) & = \mathop{\mathrm{Mor}}\nolimits _{\textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {Y})} (\mathcal{G}, f_*\mathcal{F}) \\ & = \mathop{\mathrm{Mor}}\nolimits _{\mathit{QCoh}(\mathcal{O}_\mathcal {Y})}(\mathcal{G}, Q(f_*\mathcal{F})) \\ & = \mathop{\mathrm{Mor}}\nolimits _{\mathit{QCoh}(\mathcal{O}_\mathcal {Y})}(\mathcal{G}, f_{\mathit{QCoh}, *}\mathcal{F}) \end{align*}

the first equality by adjointness of $f_*$ and $f^*$ (for arbitrary sheaves of modules). By Proposition 103.8.1 we see that $f_*\mathcal{F}$ is an object of $\textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {Y})$ (and can be computed in either the fppf or étale topology) and we obtain the second equality by Lemma 103.10.1. The third equality is the definition of $f_{\mathit{QCoh}, *}$.

To see that $\{ R^ if_{\mathit{QCoh}, *}\} _{i \geq 0}$ is a cohomological $\delta $-functor as defined in Homology, Definition 12.12.1 let

\[ 0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 \]

be a short exact sequence of $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$. This sequence may not be an exact sequence in $\textit{Mod}(\mathcal{O}_\mathcal {X})$ but we know that it is up to parasitic modules, see Lemma 103.9.4. Thus we may break up the sequence into short exact sequences

\[ \begin{matrix} 0 \to \mathcal{P}_1 \to \mathcal{F}_1 \to \mathcal{I}_2 \to 0 \\ 0 \to \mathcal{I}_2 \to \mathcal{F}_2 \to \mathcal{Q}_2 \to 0 \\ 0 \to \mathcal{P}_2 \to \mathcal{Q}_2 \to \mathcal{I}_3 \to 0 \\ 0 \to \mathcal{I}_3 \to \mathcal{F}_3 \to \mathcal{P}_3 \to 0 \end{matrix} \]

of $\textit{Mod}(\mathcal{O}_\mathcal {X})$ with $\mathcal{P}_ i$ parasitic. Note that each of the sheaves $\mathcal{P}_ j$, $\mathcal{I}_ j$, $\mathcal{Q}_ j$ is an object of $\textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X})$, see Proposition 103.8.1. Applying $R^ if_*$ we obtain long exact sequences

\[ \begin{matrix} 0 \to f_*\mathcal{P}_1 \to f_*\mathcal{F}_1 \to f_*\mathcal{I}_2 \to R^1f_*\mathcal{P}_1 \to \ldots \\ 0 \to f_*\mathcal{I}_2 \to f_*\mathcal{F}_2 \to f_*\mathcal{Q}_2 \to R^1f_*\mathcal{I}_2 \to \ldots \\ 0 \to f_*\mathcal{P}_2 \to f_*\mathcal{Q}_2 \to f_*\mathcal{I}_3 \to R^1f_*\mathcal{P}_2 \to \ldots \\ 0 \to f_*\mathcal{I}_3 \to f_*\mathcal{F}_3 \to f_*\mathcal{P}_3 \to R^1f_*\mathcal{I}_3 \to \ldots \end{matrix} \]

where are the terms are objects of $\textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {Y})$ by Proposition 103.8.1. By Lemma 103.9.3 the sheaves $R^ if_*\mathcal{P}_ j$ are parasitic, hence vanish on applying the functor $Q$, see Lemma 103.10.2. Since $Q$ is exact the maps

\[ Q(R^ if_*\mathcal{F}_3) \cong Q(R^ if_*\mathcal{I}_3) \cong Q(R^ if_*\mathcal{Q}_2) \rightarrow Q(R^{i + 1}f_*\mathcal{I}_2) \cong Q(R^{i + 1}f_*\mathcal{F}_1) \]

can serve as the connecting map which turns the family of functors $\{ R^ if_{\mathit{QCoh}, *}\} _{i \geq 0}$ into a cohomological $\delta $-functor. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 077A. Beware of the difference between the letter 'O' and the digit '0'.