Proof.
We have \mathit{QCoh}(\mathcal{O}_\mathcal {X}) \subset \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X}), see Section 103.8. Hence \mathop{\mathrm{Ker}}(\beta )/\mathop{\mathrm{Im}}(\alpha ) computed in \textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X}) or \textit{Mod}(\mathcal{X}_{fppf}, \mathcal{O}_\mathcal {X}) agree, see Proposition 103.8.1. From now on we will use the étale topology on \mathcal{X}.
Let \mathcal{E} be the cohomology of \mathcal{F} \to \mathcal{G} \to \mathcal{H} computed in the abelian category \mathit{QCoh}(\mathcal{O}_\mathcal {X}). Let x : U \to \mathcal{X} be a flat morphism where U is a scheme. As we are using the étale topology, the restriction functor \textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X}) \to \textit{Mod}(U_{\acute{e}tale}, \mathcal{O}_ U) is exact. On the other hand, by Lemma 103.4.1 and Sheaves on Stacks, Lemma 96.14.2 the restriction functor
\mathit{QCoh}(\mathcal{O}_\mathcal {X}) \xrightarrow {x^*} \mathit{QCoh}((\mathit{Sch}/U)_{\acute{e}tale}, \mathcal{O}) \xrightarrow {{-}|_{U_{\acute{e}tale}}} \mathit{QCoh}(U_{\acute{e}tale}, \mathcal{O}_ U)
is exact too. We conclude that \mathcal{E}|_{U_{\acute{e}tale}} = (\mathop{\mathrm{Ker}}(\beta )/\mathop{\mathrm{Im}}(\alpha ))|_{U_{\acute{e}tale}}.
If (1) holds, then \mathcal{E} = 0 hence \mathop{\mathrm{Ker}}(\beta )/\mathop{\mathrm{Im}}(\alpha ) restricts to zero on U_{\acute{e}tale} for all U flat over \mathcal{X} and this is the definition of a parasitic module. If (2) holds, then \mathop{\mathrm{Ker}}(\beta )/\mathop{\mathrm{Im}}(\alpha ) restricts to zero on U_{\acute{e}tale} for all U flat over \mathcal{X} hence \mathcal{E} restricts to zero on U_{\acute{e}tale} for all U flat over \mathcal{X}. This certainly implies that the quasi-coherent module \mathcal{E} is zero, for example apply Lemma 103.4.2 to the map 0 \to \mathcal{E}.
\square
Comments (0)