The Stacks project

Lemma 102.10.2. Let $\mathcal{X}$ be an algebraic stack. Let $Q : \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X}) \to \mathit{QCoh}(\mathcal{O}_\mathcal {X})$ be the functor constructed in Lemma 102.10.1.

  1. The kernel of $Q$ is exactly the collection of parasitic objects of $\textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X})$.

  2. For any object $\mathcal{F}$ of $\textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X})$ both the kernel and the cokernel of the adjunction map $Q(\mathcal{F}) \to \mathcal{F}$ are parasitic.

  3. The functor $Q$ is exact and commutes with all limits and colimits.

Proof. Write $\mathcal{X} = [U/R]$ as in the proof of Lemma 102.10.1. Let $\mathcal{F}$ be an object of $\textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X})$. It is clear from the proof of Lemma 102.10.1 that $\mathcal{F}$ is in the kernel of $Q$ if and only if $\mathcal{F}|_{U_{\acute{e}tale}} = 0$. In particular, if $\mathcal{F}$ is parasitic then $\mathcal{F}$ is in the kernel. Next, let $x : V \to \mathcal{X}$ be a flat morphism, where $V$ is a scheme. Set $W = V \times _\mathcal {X} U$ and consider the diagram

\[ \xymatrix{ W \ar[d]_ p \ar[r]_ q & V \ar[d] \\ U \ar[r] & \mathcal{X} } \]

Note that the projection $p : W \to U$ is flat and the projection $q : W \to V$ is smooth and surjective. This implies that $q_{small}^*$ is a faithful functor on quasi-coherent modules. By assumption $\mathcal{F}$ has the flat base change property so that we obtain $p_{small}^*\mathcal{F}|_{U_{\acute{e}tale}} \cong q_{small}^*\mathcal{F}|_{V_{\acute{e}tale}}$. Thus if $\mathcal{F}$ is in the kernel of $Q$, then $\mathcal{F}|_{V_{\acute{e}tale}} = 0$ which completes the proof of (1).

Part (2) follows from the discussion above and the fact that the map $Q(\mathcal{F}) \to \mathcal{F}$ becomes an isomorphism after restricting to $U_{\acute{e}tale}$.

To see part (3) note that $Q$ is left exact as a right adjoint. Let $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ be a short exact sequence in $\textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X})$. Consider the following commutative diagram

\[ \xymatrix{ 0 \ar[r] & Q(\mathcal{F}) \ar[r] \ar[d]_ a & Q(\mathcal{G}) \ar[r] \ar[d]_ b & Q(\mathcal{H}) \ar[r] \ar[d]_ c & 0 \\ 0 \ar[r] & \mathcal{F} \ar[r] & \mathcal{G} \ar[r] & \mathcal{H} \ar[r] & 0 } \]

Since the kernels and cokernels of $a$, $b$, and $c$ are parasitic by part (2) and since the bottom row is a short exact sequence, we see that the top row as a complex of $\mathcal{O}_\mathcal {X}$-modules has parasitic cohomology sheaves (details omitted; this uses that the category of parasitic modules is a Serre subcategory of the category of all modules). By left exactness of $Q$ we see that only exactness at $Q(\mathcal{H})$ is at issue. However, the cokernel $\mathcal{Q}$ of $Q(\mathcal{G}) \to Q(\mathcal{H}))$ may be computed either in $\textit{Mod}(\mathcal{O}_\mathcal {X})$ or in $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$ with the same result because the inclusion functor $\mathit{QCoh}(\mathcal{O}_\mathcal {X}) \to \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X})$ is a left adjoint and hence right exact. Hence $\mathcal{Q} = Q(\mathcal{Q})$ is both quasi-coherent and parasitic, whence $0$ by part (1) as desired.

As a right adjoint $Q$ commutes with all limits. Since $Q$ is exact, to show that $Q$ commutes with all colimits it suffices to show that $Q$ commutes with direct sums, see Categories, Lemma 4.14.12. Let $\mathcal{F}_ i$, $i \in I$ be a family of objects of $\textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X})$. To see that $Q(\bigoplus \mathcal{F}_ i)$ is equal to $\bigoplus Q(\mathcal{F}_ i)$ we look at the construction of $Q$ in the proof of Lemma 102.10.1. This uses a presentation $\mathcal{X} = [U/R]$ where $U$ is a scheme. Then $Q(\mathcal{F})$ is computed by first taking the pair $(\mathcal{F}|_{U_{\acute{e}tale}}, \alpha )$ in $\mathit{QCoh}(U, R, s, t, c)$ and then using the equivalence $\mathit{QCoh}(U, R, s, t, c) \cong \mathit{QCoh}(\mathcal{O}_\mathcal {X})$. Since the restriction functor $\textit{Mod}(\mathcal{O}_\mathcal {X}) \to \textit{Mod}(\mathcal{O}_{U_{\acute{e}tale}})$, $\mathcal{F} \mapsto \mathcal{F}|_{U_{\acute{e}tale}}$ commutes with direct sums, the desired equality is clear. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0779. Beware of the difference between the letter 'O' and the digit '0'.