Processing math: 100%

The Stacks project

Proposition 104.7.1. Let f : \mathcal{X} \to \mathcal{Y} be a morphism of algebraic stacks. The exact functor f^* induces a commutative diagram

\xymatrix{ D_{\textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {X}) \ar[r] & D(\mathcal{O}_\mathcal {X}) \\ D_{\textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {Y}) \ar[r] \ar[u]^{f^*} & D(\mathcal{O}_\mathcal {Y}) \ar[u]^{f^*} }

The composition

D_{\textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {Y}) \xrightarrow {f^*} D_{\textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {X}) \xrightarrow {q_\mathcal {X}} D_\mathit{QCoh}(\mathcal{O}_\mathcal {X})

is left derivable with respect to the localization D_{\textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {Y}) \to D_\mathit{QCoh}(\mathcal{O}_\mathcal {Y}) and we may define Lf^*_\mathit{QCoh} as its left derived functor

Lf_\mathit{QCoh}^* : D_\mathit{QCoh}(\mathcal{O}_\mathcal {Y}) \longrightarrow D_\mathit{QCoh}(\mathcal{O}_\mathcal {X})

(see Derived Categories, Definitions 13.14.2 and 13.14.9). If f is quasi-compact and quasi-separated, then Lf^*_\mathit{QCoh} and Rf_{\mathit{QCoh}, *} satisfy the following adjointness:

\mathop{\mathrm{Hom}}\nolimits _{D_\mathit{QCoh}(\mathcal{O}_\mathcal {X})}(Lf^*_\mathit{QCoh}A, B) = \mathop{\mathrm{Hom}}\nolimits _{D_\mathit{QCoh}(\mathcal{O}_\mathcal {Y})}(A, Rf_{\mathit{QCoh}, *}B)

for A \in D_\mathit{QCoh}(\mathcal{O}_\mathcal {Y}) and B \in D^{+}_\mathit{QCoh}(\mathcal{O}_\mathcal {X}).

Proof. To prove the first statement, we have to show that f^*E is an object of D_{\textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {X}) for E in D_{\textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {Y}). Since f^* = f^{-1} is exact this follows immediately from the fact that f^* maps \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {Y}) into \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X}) by Cohomology of Stacks, Proposition 103.8.1.

Set \mathcal{D} = D_{\textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {Y}). Let S be the collection of morphisms in \mathcal{D} whose cone is an object of D_{\textit{Parasitic} \cap \textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {Y}). Set \mathcal{D}' = D_\mathit{QCoh}(\mathcal{O}_\mathcal {X}). Set F = q_\mathcal {X} \circ f^* : \mathcal{D} \to \mathcal{D}'. Then \mathcal{D}, S, \mathcal{D}', F are as in Derived Categories, Situation 13.14.1 and Definition 13.14.2. Let us prove that LF(E) is defined for any object E of \mathcal{D}. Namely, consider the triangle

E' \to E \to P \to E'[1]

constructed in Lemma 104.5.4. Note that s : E' \to E is an element of S. We claim that E' computes LF. Namely, suppose that s' : E'' \to E is another element of S, i.e., fits into a triangle E'' \to E \to P' \to E''[1] with P' in D_{\textit{Parasitic} \cap \textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {Y}). By Lemma 104.5.4 (and its proof) we see that E' \to E factors through E'' \to E. Thus we see that E' \to E is cofinal in the system S/E. Hence it is clear that E' computes LF.

To see the final statement, write B = q_\mathcal {X}(H) and A = q_\mathcal {Y}(E). Choose E' \to E as above. We will use on the one hand that Rf_{\mathit{QCoh}, *}(B) = q_\mathcal {Y}(Rf_*H) and on the other that Lf^*_\mathit{QCoh}(A) = q_\mathcal {X}(f^*E').

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _{D_\mathit{QCoh}(\mathcal{O}_\mathcal {X})}(Lf^*_\mathit{QCoh}A, B) & = \mathop{\mathrm{Hom}}\nolimits _{D_\mathit{QCoh}(\mathcal{O}_\mathcal {X})}(q_\mathcal {X}(f^*E'), q_\mathcal {X}(H)) \\ & = \mathop{\mathrm{colim}}\nolimits _{H \to H'} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_\mathcal {X})}(f^*E', H') \\ & = \mathop{\mathrm{colim}}\nolimits _{H \to H'} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_\mathcal {Y})}(E', Rf_*H') \\ & = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_\mathcal {Y})}(E', Rf_*H) \\ & = \mathop{\mathrm{Hom}}\nolimits _{D_\mathit{QCoh}(\mathcal{O}_\mathcal {Y})}(A, Rf_{\mathit{QCoh}, *}B) \end{align*}

Here the colimit is over morphisms s : H \to H' in D^+_{\textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {X}) whose cone P(s) is an object of D^+_{\textit{Parasitic} \cap \textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {X}). The first equality we've seen above. The second equality holds by construction of the Verdier quotient. The third equality holds by Cohomology on Sites, Lemma 21.19.1. Since Rf_*P(s) is an object of D^+_{\textit{Parasitic} \cap \textit{LQCoh}^{fbc}}(\mathcal{O}_\mathcal {Y}) by Proposition 104.6.1 we see that \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_\mathcal {Y})}(E', Rf_*P(s)) = 0. Thus the fourth equality holds. The final equality holds by construction of E'. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.