The Stacks project

Lemma 16.3.1. Let $R$ be a ring and let $A$ be a finitely presented $R$-algebra. There exists finite type $R$-algebra map $A \to C$ which has a retraction with the following two properties

  1. for each $a \in A$ such that $R \to A_ a$ is a local complete intersection (More on Algebra, Definition 15.33.2) the ring $C_ a$ is smooth over $A_ a$ and has a presentation $C_ a = R[y_1, \ldots , y_ m]/J$ such that $J/J^2$ is free over $C_ a$, and

  2. for each $a \in A$ such that $A_ a$ is smooth over $R$ the module $\Omega _{C_ a/R}$ is free over $C_ a$.

Proof. Choose a presentation $A = R[x_1, \ldots , x_ n]/I$ and write $I = (f_1, \ldots , f_ m)$. Define the $A$-module $K$ by the short exact sequence

\[ 0 \to K \to A^{\oplus m} \to I/I^2 \to 0 \]

where the $j$th basis vector $e_ j$ in the middle is mapped to the class of $f_ j$ on the right. Set

\[ C = \text{Sym}^*_ A(I/I^2). \]

The retraction is just the projection onto the degree $0$ part of $C$. We have a surjection $R[x_1, \ldots , x_ n, y_1, \ldots , y_ m] \to C$ which maps $y_ j$ to the class of $f_ j$ in $I/I^2$. The kernel $J$ of this map is generated by the elements $f_1, \ldots , f_ m$ and by elements $\sum h_ j y_ j$ with $h_ j \in R[x_1, \ldots , x_ n]$ such that $\sum h_ j e_ j$ defines an element of $K$. By Algebra, Lemma 10.134.4 applied to $R \to A \to C$ and the presentations above and More on Algebra, Lemma 15.9.12 there is a short exact sequence

16.3.1.1
\begin{equation} \label{smoothing-equation-sequence} I/I^2 \otimes _ A C \to J/J^2 \to K \otimes _ A C \to 0 \end{equation}

of $C$-modules. Let $h \in R[x_1, \ldots , x_ n]$ be an element with image $a \in A$. We will use as presentations for the localized rings

\[ A_ a = R[x_0, x_1, \ldots , x_ n]/I' \quad \text{and}\quad C_ a = R[x_0, x_1, \ldots , x_ n, y_1, \ldots , y_ m]/J' \]

where $I' = (hx_0 - 1, I)$ and $J' = (hx_0 - 1, J)$. Hence $I'/(I')^2 = A_ a \oplus (I/I^2)_ a$ as $A_ a$-modules and $J'/(J')^2 = C_ a \oplus (J/J^2)_ a$ as $C_ a$-modules. Thus we obtain

16.3.1.2
\begin{equation} \label{smoothing-equation-sequence-localized} C_ a \oplus I/I^2 \otimes _ A C_ a \to C_ a \oplus (J/J^2)_ a \to K \otimes _ A C_ a \to 0 \end{equation}

as the sequence of Algebra, Lemma 10.134.4 corresponding to $R \to A_ a \to C_ a$ and the presentations above.

Next, assume that $a \in A$ is such that $A_ a$ is a local complete intersection over $R$. Then $(I/I^2)_ a$ is finite projective over $A_ a$, see More on Algebra, Lemma 15.32.3. Hence we see $K_ a \oplus (I/I^2)_ a \cong A_ a^{\oplus m}$ is free. In particular $K_ a$ is finite projective too. By More on Algebra, Lemma 15.33.6 the sequence (16.3.1.2) is exact on the left. Hence

\[ J'/(J')^2 \cong C_ a \oplus I/I^2 \otimes _ A C_ a \oplus K \otimes _ A C_ a \cong C_ a^{\oplus m + 1} \]

This proves (1). Finally, suppose that in addition $A_ a$ is smooth over $R$. Then the same presentation shows that $\Omega _{C_ a/R}$ is the cokernel of the map

\[ J'/(J')^2 \longrightarrow \bigoplus \nolimits _ i C_ a\text{d}x_ i \oplus \bigoplus \nolimits _ j C_ a\text{d}y_ j \]

The summand $C_ a$ of $J'/(J')^2$ in the decomposition above corresponds to $hx_0 - 1$ and hence maps isomorphically to the summand $C_ a\text{d}x_0$. The summand $I/I^2 \otimes _ A C_ a$ of $J'/(J')^2$ maps injectively to $\bigoplus _{i = 1, \ldots , n} C_ a\text{d}x_ i$ with quotient $\Omega _{A_ a/R} \otimes _{A_ a} C_ a$. The summand $K \otimes _ A C_ a$ maps injectively to $\bigoplus _{j \geq 1} C_ a\text{d}y_ j$ with quotient isomorphic to $I/I^2 \otimes _ A C_ a$. Thus the cokernel of the last displayed map is the module $I/I^2 \otimes _ A C_ a \oplus \Omega _{A_ a/R} \otimes _{A_ a} C_ a$. Since $(I/I^2)_ a \oplus \Omega _{A_ a/R}$ is free (from the definition of smooth ring maps) we see that (2) holds. $\square$


Comments (2)

Comment #2534 by Andreas on

Just above (16.3.1.2) it should be , right?


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07CE. Beware of the difference between the letter 'O' and the digit '0'.