Lemma 15.9.12. Let A be a ring. Let 0 \to K \to A^{\oplus m} \to M \to 0 be a sequence of A-modules. Consider the A-algebra C = \text{Sym}^*_ A(M) with its presentation \alpha : A[y_1, \ldots , y_ m] \to C coming from the surjection A^{\oplus m} \to M. Then
\mathop{N\! L}\nolimits (\alpha ) = (K \otimes _ A C \to \bigoplus \nolimits _{j = 1, \ldots , m} C \text{d}y_ j)
(see Algebra, Section 10.134) in particular \Omega _{C/A} = M \otimes _ A C.
Proof.
Let J = \mathop{\mathrm{Ker}}(\alpha ). The lemma asserts that J/J^2 \cong K \otimes _ A C. Note that \alpha is a homomorphism of graded algebras. We will prove that in degree d we have (J/J^2)_ d = K \otimes _ A C_{d - 1}. Note that
J_ d = \mathop{\mathrm{Ker}}(\text{Sym}^ d_ A(A^{\oplus m}) \to \text{Sym}^ d_ A(M)) = \mathop{\mathrm{Im}}(K \otimes _ A \text{Sym}^{d - 1}_ A(A^{\oplus m}) \to \text{Sym}^ d_ A(A^{\oplus m})),
see Algebra, Lemma 10.13.2. It follows that (J^2)_ d = \sum _{a + b = d} J_ a \cdot J_ b is the image of
K \otimes _ A K \otimes _ A \text{Sym}^{d - 2}_ A(A^{\otimes m}) \to \text{Sym}^ d_ A(A^{\oplus m}).
The cokernel of the map K \otimes _ A \text{Sym}^{d - 2}_ A(A^{\otimes m}) \to \text{Sym}^{d - 1}_ A(A^{\oplus m}) is \text{Sym}^{d - 1}_ A(M) by the lemma referenced above. Hence it is clear that (J/J^2)_ d = J_ d/(J^2)_ d is equal to
\begin{align*} \mathop{\mathrm{Coker}}( K \otimes _ A K \otimes _ A \text{Sym}^{d - 2}_ A(A^{\otimes m}) \to K \otimes _ A \text{Sym}^{d - 1}_ A(A^{\otimes m})) & = K \otimes _ A \text{Sym}^{d - 1}_ A(M) \\ & = K \otimes _ A C_{d -1} \end{align*}
as desired.
\square
Comments (0)