Lemma 15.9.11. Let $A$ be a ring, let $I \subset A$ be an ideal. Let $\overline{P}$ be a finite projective $A/I$-module. Then there exists an étale ring map $A \to A'$ which induces an isomorphism $A/I \to A'/IA'$ and a finite projective $A'$-module $P'$ lifting $\overline{P}$.

**Proof.**
We can choose an integer $n$ and a direct sum decomposition $(A/I)^{\oplus n} = \overline{P} \oplus \overline{K}$ for some $R/I$-module $\overline{K}$. Choose a lift $\varphi : A^{\oplus n} \to A^{\oplus n}$ of the projector $\overline{p}$ associated to the direct summand $\overline{P}$. Let $f \in A[x]$ be the characteristic polynomial of $\varphi $. Set $B = A[x]/(f)$. By Cayley-Hamilton (Algebra, Lemma 10.15.1) there is a map $B \to \text{End}_ A(A^{\oplus n})$ mapping $x$ to $\varphi $. For every prime $\mathfrak p \supset I$ the image of $f$ in $\kappa (\mathfrak p)$ is $(x - 1)^ rx^{n - r}$ where $r$ is the dimension of $\overline{P} \otimes _{A/I} \kappa (\mathfrak p)$. Hence $(x - 1)^ nx^ n$ maps to zero in $B \otimes _ A \kappa (\mathfrak p)$ for all $\mathfrak p \supset I$. Thus $x(1 - x)$ is contained in every prime ideal of $B/IB$. Hence $x^ N(1 - x)^ N$ is contained in $IB$ for some $N \geq 1$. It follows that $x^ N + (1 - x)^ N$ is a unit in $B/IB$ and that

is an idempotent as both assertions hold in $\mathbf{Z}[x]/(x^ N(x - 1)^ N)$. The image of $\overline{e}$ in $\text{End}_{A/I}((A/I)^{\oplus n})$ is

as $\overline{p}$ is an idempotent. After replacing $A$ by an étale extension $A'$ as in the lemma, we may assume there exists an idempotent $e \in B$ which maps to $\overline{e}$ in $B/IB$, see Lemma 15.9.10. Then the image of $e$ under the map

is an idempotent element $p$ which lifts $\overline{p}$. Setting $P = \mathop{\mathrm{Im}}(p)$ we win. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (4)

Comment #3649 by Brian Conrad on

Comment #3745 by Johan on

Comment #3755 by Laurent Moret-Bailly on

Comment #3889 by Johan on