The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 15.9.10. Let $A$ be a ring, let $I \subset A$ be an ideal. Let $A \to B$ be an integral ring map. Let $\overline{e} \in B/IB$ be an idempotent. Then there exists an ├ętale ring map $A \to A'$ which induces an isomorphism $A/I \to A'/IA'$ and an idempotent $e' \in B \otimes _ A A'$ lifting $\overline{e}$.

Proof. Choose an element $y \in B$ lifting $\overline{e}$. Choose $f \in A[x]$ as in Lemma 15.9.9 for $y$. By Lemma 15.9.6 we can find an ├ętale ring map $A \to A'$ which induces an isomorphism $A/I \to A'/IA'$ and such that $f = gh$ in $A[x]$ with $g(x) = x^ d \bmod IA'$ and $h(x) = (x - 1)^ d \bmod IA'$. After replacing $A$ by $A'$ we may assume that the factorization is defined over $A$. In that case we see that $b_1 = g(y) \in B$ is a lift of $\overline{e}^ d = \overline{e}$ and $b_2 = h(y) \in B$ is a lift of $(\overline{e} - 1)^ d = (-1)^ d (1 - \overline{e})^ d = (-1)^ d(1 - \overline{e})$ and moreover $b_1b_2 = 0$. Thus $(b_1, b_2)B/IB = B/IB$ and $V(b_1, b_2) \subset \mathop{\mathrm{Spec}}(B)$ is disjoint from $V(IB)$. Since $\mathop{\mathrm{Spec}}(B) \to \mathop{\mathrm{Spec}}(A)$ is closed (see Algebra, Lemmas 10.35.22 and 10.40.6) we can find an $a \in A$ which maps to an invertible element of $A/I$ whose image in $B$ lies in $(b_1, b_2)$, see Lemma 15.9.8. After replacing $A$ by the localization $A_ a$ we get that $(b_1, b_2) = B$. Then $\mathop{\mathrm{Spec}}(B) = D(b_1) \amalg D(b_2)$; disjoint union because $(b_1, b_2) = B$ and covers $\mathop{\mathrm{Spec}}(B)$ because $b_1b_2 = 0$. Let $e \in B$ be the idempotent corresponding to the open and closed subset $D(b_1)$, see Algebra, Lemma 10.20.3. Since $b_1$ is a lift of $\overline{e}$ and $b_2$ is a lift of $\pm (1 - \overline{e})$ we conclude that $e$ is a lift of $\overline{e}$ by the uniqueness statement in Algebra, Lemma 10.20.3. $\square$


Comments (2)

Comment #3633 by Brian Conrad on

"disjoint union because " should say "disjoint union because , and covers because ".


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07M4. Beware of the difference between the letter 'O' and the digit '0'.