Lemma 15.34.2. Let $M/L/K$ be field extensions. Then the Jacobi-Zariski sequence
\[ 0 \to H_1(L_{L/K}) \otimes _ L M \to H_1(L_{M/K}) \to H_1(L_{M/L}) \to \Omega _{L/K} \otimes _ L M \to \Omega _{M/K} \to \Omega _{M/L} \to 0 \]
is exact.
Lemma 15.34.2. Let $M/L/K$ be field extensions. Then the Jacobi-Zariski sequence
is exact.
Proof. Combine Lemma 15.33.7 with Algebra, Lemma 10.158.11. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: