Lemma 15.34.1 (Cartier equality). Let $K/k$ be a finitely generated field extension. Then $\Omega _{K/k}$ and $H_1(L_{K/k})$ are finite dimensional and $\text{trdeg}_ k(K) = \dim _ K \Omega _{K/k} - \dim _ K H_1(L_{K/k})$.
15.34 Cartier's equality and geometric regularity
A reference for this section and the next is [Section 39, MatCA]. In order to comfortably read this section the reader should be familiar with the naive cotangent complex and its properties, see Algebra, Section 10.134.
Proof. We can find a global complete intersection $A = k[x_1, \ldots , x_ n]/(f_1, \ldots , f_ c)$ over $k$ such that $K$ is isomorphic to the fraction field of $A$, see Algebra, Lemma 10.158.11 and its proof. In this case we see that $\mathop{N\! L}\nolimits _{K/k}$ is homotopy equivalent to the complex
by Algebra, Lemmas 10.134.2 and 10.134.13. The transcendence degree of $K$ over $k$ is the dimension of $A$ (by Algebra, Lemma 10.116.1) which is $n - c$ and we win. $\square$
Lemma 15.34.2. Let $M/L/K$ be field extensions. Then the Jacobi-Zariski sequence is exact.
Proof. Combine Lemma 15.33.7 with Algebra, Lemma 10.158.11. $\square$
Lemma 15.34.3. Given a commutative diagram of fields with $k'/k$ and $K'/K$ finitely generated field extensions the kernel and cokernel of the maps are finite dimensional and
Proof. The Jacobi-Zariski sequences for $k \subset k' \subset K'$ and $k \subset K \subset K'$ are
and
By Lemma 15.34.1 the vector spaces $\Omega _{k'/k}$, $\Omega _{K'/K}$, $H_1(L_{K'/K})$, and $H_1(L_{k'/k})$ are finite dimensional and the alternating sum of their dimensions is $\text{trdeg}_ k(k') - \text{trdeg}_ K(K')$. The lemma follows. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #6450 by Yijin Wang on
Comment #6460 by Johan on