## 15.34 Cartier's equality and geometric regularity

A reference for this section and the next is [Section 39, MatCA]. In order to comfortably read this section the reader should be familiar with the naive cotangent complex and its properties, see Algebra, Section 10.134.

Lemma 15.34.1 (Cartier equality). Let $K/k$ be a finitely generated field extension. Then $\Omega _{K/k}$ and $H_1(L_{K/k})$ are finite dimensional and $\text{trdeg}_ k(K) = \dim _ K \Omega _{K/k} - \dim _ K H_1(L_{K/k})$.

Proof. We can find a global complete intersection $A = k[x_1, \ldots , x_ n]/(f_1, \ldots , f_ c)$ over $k$ such that $K$ is isomorphic to the fraction field of $A$, see Algebra, Lemma 10.158.11 and its proof. In this case we see that $\mathop{N\! L}\nolimits _{K/k}$ is homotopy equivalent to the complex

$\bigoplus \nolimits _{j = 1, \ldots , c} K \longrightarrow \bigoplus \nolimits _{i = 1, \ldots , n} K\text{d}x_ i$

by Algebra, Lemmas 10.134.2 and 10.134.13. The transcendence degree of $K$ over $k$ is the dimension of $A$ (by Algebra, Lemma 10.116.1) which is $n - c$ and we win. $\square$

Lemma 15.34.2. Let $M/L/K$ be field extensions. Then the Jacobi-Zariski sequence

$0 \to H_1(L_{L/K}) \otimes _ L M \to H_1(L_{M/K}) \to H_1(L_{M/L}) \to \Omega _{L/K} \otimes _ L M \to \Omega _{M/K} \to \Omega _{M/L} \to 0$

is exact.

Lemma 15.34.3. Given a commutative diagram of fields

$\xymatrix{ K \ar[r] & K' \\ k \ar[u] \ar[r] & k' \ar[u] }$

with $k'/k$ and $K'/K$ finitely generated field extensions the kernel and cokernel of the maps

$\alpha : \Omega _{K/k} \otimes _ K K' \to \Omega _{K'/k'} \quad \text{and}\quad \beta : H_1(L_{K/k}) \otimes _ K K' \to H_1(L_{K'/k'})$

are finite dimensional and

$\dim \mathop{\mathrm{Ker}}(\alpha ) - \dim \mathop{\mathrm{Coker}}(\alpha ) -\dim \mathop{\mathrm{Ker}}(\beta ) + \dim \mathop{\mathrm{Coker}}(\beta ) = \text{trdeg}_ k(k') - \text{trdeg}_ K(K')$

Proof. The Jacobi-Zariski sequences for $k \subset k' \subset K'$ and $k \subset K \subset K'$ are

$0 \to H_1(L_{k'/k}) \otimes K' \to H_1(L_{K'/k}) \to H_1(L_{K'/k'}) \to \Omega _{k'/k} \otimes K' \to \Omega _{K'/k} \to \Omega _{K'/k'} \to 0$

and

$0 \to H_1(L_{K/k}) \otimes K' \to H_1(L_{K'/k}) \to H_1(L_{K'/K}) \to \Omega _{K/k} \otimes K' \to \Omega _{K'/k} \to \Omega _{K'/K} \to 0$

By Lemma 15.34.1 the vector spaces $\Omega _{k'/k}$, $\Omega _{K'/K}$, $H_1(L_{K'/K})$, and $H_1(L_{k'/k})$ are finite dimensional and the alternating sum of their dimensions is $\text{trdeg}_ k(k') - \text{trdeg}_ K(K')$. The lemma follows. $\square$

Comment #6450 by Yijin Wang on

In lemma15.34.3,the first Jacobi-Zariski sequence,the last differential module should be Omega_{K'/k'}，I think.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).