Lemma 15.41.5. Let R be a ring. Let (A_ i, \varphi _{ii'}) be a directed system of smooth R-algebras. Set \Lambda = \mathop{\mathrm{colim}}\nolimits A_ i. If the fibre rings \Lambda \otimes _ R \kappa (\mathfrak p) are Noetherian for all \mathfrak p \subset R, then R \to \Lambda is regular.
Proof. Note that \Lambda is flat over R by Algebra, Lemmas 10.39.3 and 10.137.10. Let \kappa (\mathfrak p) \subset k be a finite purely inseparable extension. Note that
is a colimit of smooth k-algebras, see Algebra, Lemma 10.137.4. Since each local ring of a smooth k-algebra is regular by Algebra, Lemma 10.140.3 we conclude that all local rings of \Lambda \otimes _ R k are regular by Algebra, Lemma 10.106.8. This proves the lemma. \square
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)