Lemma 15.40.5. Let $R$ be a ring. Let $(A_ i, \varphi _{ii'})$ be a directed system of smooth $R$-algebras. Set $\Lambda = \mathop{\mathrm{colim}}\nolimits A_ i$. If the fibre rings $\Lambda \otimes _ R \kappa (\mathfrak p)$ are Noetherian for all $\mathfrak p \subset R$, then $R \to \Lambda$ is regular.

Proof. Note that $\Lambda$ is flat over $R$ by Algebra, Lemmas 10.38.3 and 10.135.10. Let $\kappa (\mathfrak p) \subset k$ be a finite purely inseparable extension. Note that

$\Lambda \otimes _ R \kappa (\mathfrak p) \otimes _{\kappa (\mathfrak p)} k = \Lambda \otimes _ R k = \mathop{\mathrm{colim}}\nolimits A_ i \otimes _ R k$

is a colimit of smooth $k$-algebras, see Algebra, Lemma 10.135.4. Since each local ring of a smooth $k$-algebra is regular by Algebra, Lemma 10.138.3 we conclude that all local rings of $\Lambda \otimes _ R k$ are regular by Algebra, Lemma 10.105.8. This proves the lemma. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).