The Stacks project

60.20 Divided power Poincaré lemma

Just the simplest possible version.

Lemma 60.20.1. Let $A$ be a ring. Let $P = A\langle x_ i \rangle $ be a divided power polynomial ring over $A$. For any $A$-module $M$ the complex

\[ 0 \to M \to M \otimes _ A P \to M \otimes _ A \Omega ^1_{P/A, \delta } \to M \otimes _ A \Omega ^2_{P/A, \delta } \to \ldots \]

is exact. Let $D$ be the $p$-adic completion of $P$. Let $\Omega ^ i_ D$ be the $p$-adic completion of the $i$th exterior power of $\Omega _{D/A, \delta }$. For any $p$-adically complete $A$-module $M$ the complex

\[ 0 \to M \to M \otimes ^\wedge _ A D \to M \otimes ^\wedge _ A \Omega ^1_ D \to M \otimes ^\wedge _ A \Omega ^2_ D \to \ldots \]

is exact.

Proof. It suffices to show that the complex

\[ E : (0 \to A \to P \to \Omega ^1_{P/A, \delta } \to \Omega ^2_{P/A, \delta } \to \ldots ) \]

is homotopy equivalent to zero as a complex of $A$-modules. For every multi-index $K = (k_ i)$ we can consider the subcomplex $E(K)$ which in degree $j$ consists of

\[ \bigoplus \nolimits _{I = \{ i_1, \ldots , i_ j\} \subset \text{Supp}(K)} A \prod \nolimits _{i \not\in I} x_ i^{[k_ i]} \prod \nolimits _{i \in I} x_ i^{[k_ i - 1]} \text{d}x_{i_1} \wedge \ldots \wedge \text{d}x_{i_ j} \]

Since $E = \bigoplus E(K)$ we see that it suffices to prove each of the complexes $E(K)$ is homotopic to zero. If $K = 0$, then $E(K) : (A \to A)$ is homotopic to zero. If $K$ has nonempty (finite) support $S$, then the complex $E(K)$ is isomorphic to the complex

\[ 0 \to A \to \bigoplus \nolimits _{s \in S} A \to \wedge ^2(\bigoplus \nolimits _{s \in S} A) \to \ldots \to \wedge ^{\# S}(\bigoplus \nolimits _{s \in S} A) \to 0 \]

which is homotopic to zero, for example by More on Algebra, Lemma 15.28.5. $\square$

An alternative (more direct) approach to the following lemma is explained in Example 60.25.2.

Lemma 60.20.2. Let $A$ be a ring. Let $(B, I, \delta )$ be a divided power ring. Let $P = B\langle x_ i \rangle $ be a divided power polynomial ring over $B$ with divided power ideal $J = IP + B\langle x_ i \rangle _{+}$ as usual. Let $M$ be a $B$-module endowed with an integrable connection $\nabla : M \to M \otimes _ B \Omega ^1_{B/A, \delta }$. Then the map of de Rham complexes

\[ M \otimes _ B \Omega ^*_{B/A, \delta } \longrightarrow M \otimes _ P \Omega ^*_{P/A, \delta } \]

is a quasi-isomorphism. Let $D$, resp. $D'$ be the $p$-adic completion of $B$, resp. $P$ and let $\Omega ^ i_ D$, resp. $\Omega ^ i_{D'}$ be the $p$-adic completion of $\Omega ^ i_{B/A, \delta }$, resp. $\Omega ^ i_{P/A, \delta }$. Let $M$ be a $p$-adically complete $D$-module endowed with an integral connection $\nabla : M \to M \otimes ^\wedge _ D \Omega ^1_ D$. Then the map of de Rham complexes

\[ M \otimes ^\wedge _ D \Omega ^*_ D \longrightarrow M \otimes ^\wedge _ D \Omega ^*_{D'} \]

is a quasi-isomorphism.

Proof. Consider the decreasing filtration $F^*$ on $\Omega ^*_{B/A, \delta }$ given by the subcomplexes $F^ i(\Omega ^*_{B/A, \delta }) = \sigma _{\geq i}\Omega ^*_{B/A, \delta }$. See Homology, Section 12.15. This induces a decreasing filtration $F^*$ on $\Omega ^*_{P/A, \delta }$ by setting

\[ F^ i(\Omega ^*_{P/A, \delta }) = F^ i(\Omega ^*_{B/A, \delta }) \wedge \Omega ^*_{P/A, \delta }. \]

We have a split short exact sequence

\[ 0 \to \Omega ^1_{B/A, \delta } \otimes _ B P \to \Omega ^1_{P/A, \delta } \to \Omega ^1_{P/B, \delta } \to 0 \]

and the last module is free on $\text{d}x_ i$. It follows from this that $F^ i(\Omega ^*_{P/A, \delta }) \to \Omega ^*_{P/A, \delta }$ is a termwise split injection and that

\[ \text{gr}^ i_ F(\Omega ^*_{P/A, \delta }) = \Omega ^ i_{B/A, \delta } \otimes _ B \Omega ^*_{P/B, \delta } \]

as complexes. Thus we can define a filtration $F^*$ on $M \otimes _ B \Omega ^*_{B/A, \delta }$ by setting

\[ F^ i(M \otimes _ B \Omega ^*_{P/A, \delta }) = M \otimes _ B F^ i(\Omega ^*_{P/A, \delta }) \]

and we have

\[ \text{gr}^ i_ F(M \otimes _ B \Omega ^*_{P/A, \delta }) = M \otimes _ B \Omega ^ i_{B/A, \delta } \otimes _ B \Omega ^*_{P/B, \delta } \]

as complexes. By Lemma 60.20.1 each of these complexes is quasi-isomorphic to $M \otimes _ B \Omega ^ i_{B/A, \delta }$ placed in degree $0$. Hence we see that the first displayed map of the lemma is a morphism of filtered complexes which induces a quasi-isomorphism on graded pieces. This implies that it is a quasi-isomorphism, for example by the spectral sequence associated to a filtered complex, see Homology, Section 12.24.

The proof of the second quasi-isomorphism is exactly the same. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07LB. Beware of the difference between the letter 'O' and the digit '0'.