The Stacks project

60.21 Cohomology in the affine case

Let's go back to the situation studied in Section 60.17. We start with $(A, I, \gamma )$ and $A/I \to C$ and set $X = \mathop{\mathrm{Spec}}(C)$ and $S = \mathop{\mathrm{Spec}}(A)$. Then we choose a polynomial ring $P$ over $A$ and a surjection $P \to C$ with kernel $J$. We obtain $D$ and $D(n)$ see (60.17.0.1) and (60.17.0.4). Set $T(n)_ e = \mathop{\mathrm{Spec}}(D(n)/p^ eD(n))$ so that $(X, T(n)_ e, \delta (n))$ is an object of $\text{Cris}(X/S)$. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_{X/S}$-modules and set

\[ M(n) = \mathop{\mathrm{lim}}\nolimits _ e \Gamma ((X, T(n)_ e, \delta (n)), \mathcal{F}) \]

for $n = 0, 1, 2, 3, \ldots $. This forms a cosimplicial module over the cosimplicial ring $D(0), D(1), D(2), \ldots $.

Proposition 60.21.1. With notations as above assume that

  1. $\mathcal{F}$ is locally quasi-coherent, and

  2. for any morphism $(U, T, \delta ) \to (U', T', \delta ')$ of $\text{Cris}(X/S)$ where $f : T \to T'$ is a closed immersion the map $c_ f : f^*\mathcal{F}_{T'} \to \mathcal{F}_ T$ is surjective.

Then the complex

\[ M(0) \to M(1) \to M(2) \to \ldots \]

computes $R\Gamma (\text{Cris}(X/S), \mathcal{F})$.

Proof. Using assumption (1) and Lemma 60.18.2 we see that $R\Gamma (\text{Cris}(X/S), \mathcal{F})$ is isomorphic to $R\Gamma (\mathcal{C}, \mathcal{F})$. Note that the categories $\mathcal{C}$ used in Lemmas 60.18.2 and 60.18.3 agree. Let $f : T \to T'$ be a closed immersion as in (2). Surjectivity of $c_ f : f^*\mathcal{F}_{T'} \to \mathcal{F}_ T$ is equivalent to surjectivity of $\mathcal{F}_{T'} \to f_*\mathcal{F}_ T$. Hence, if $\mathcal{F}$ satisfies (1) and (2), then we obtain a short exact sequence

\[ 0 \to \mathcal{K} \to \mathcal{F}_{T'} \to f_*\mathcal{F}_ T \to 0 \]

of quasi-coherent $\mathcal{O}_{T'}$-modules on $T'$, see Schemes, Section 26.24 and in particular Lemma 26.24.1. Thus, if $T'$ is affine, then we conclude that the restriction map $\mathcal{F}(U', T', \delta ') \to \mathcal{F}(U, T, \delta )$ is surjective by the vanishing of $H^1(T', \mathcal{K})$, see Cohomology of Schemes, Lemma 30.2.2. Hence the transition maps of the inverse systems in Lemma 60.18.3 are surjective. We conclude that $R^ pg_*(\mathcal{F}|_\mathcal {C}) = 0$ for all $p \geq 1$ where $g$ is as in Lemma 60.18.3. The object $D$ of the category $\mathcal{C}^\wedge $ satisfies the assumption of Lemma 60.18.4 by Lemma 60.5.7 with

\[ D \times \ldots \times D = D(n) \]

in $\mathcal{C}$ because $D(n)$ is the $n + 1$-fold coproduct of $D$ in $\text{Cris}^\wedge (C/A)$, see Lemma 60.17.2. Thus we win. $\square$

Lemma 60.21.2. Assumptions and notation as in Proposition 60.21.1. Then

\[ H^ j(\text{Cris}(X/S), \mathcal{F} \otimes _{\mathcal{O}_{X/S}} \Omega ^ i_{X/S}) = 0 \]

for all $i > 0$ and all $j \geq 0$.

Proof. Using Lemma 60.12.6 it follows that $\mathcal{H} = \mathcal{F} \otimes _{\mathcal{O}_{X/S}} \Omega ^ i_{X/S}$ also satisfies assumptions (1) and (2) of Proposition 60.21.1. Write $M(n)_ e = \Gamma ((X, T(n)_ e, \delta (n)), \mathcal{F})$ so that $M(n) = \mathop{\mathrm{lim}}\nolimits _ e M(n)_ e$. Then

\begin{align*} \mathop{\mathrm{lim}}\nolimits _ e \Gamma ((X, T(n)_ e, \delta (n)), \mathcal{H}) & = \mathop{\mathrm{lim}}\nolimits _ e M(n)_ e \otimes _{D(n)_ e} \Omega _{D(n)}/p^ e\Omega _{D(n)} \\ & = \mathop{\mathrm{lim}}\nolimits _ e M(n)_ e \otimes _{D(n)} \Omega _{D(n)} \end{align*}

By Lemma 60.19.3 the cosimplicial modules

\[ M(0)_ e \otimes _{D(0)} \Omega ^ i_{D(0)} \to M(1)_ e \otimes _{D(1)} \Omega ^ i_{D(1)} \to M(2)_ e \otimes _{D(2)} \Omega ^ i_{D(2)} \to \ldots \]

are homotopic to zero. Because the transition maps $M(n)_{e + 1} \to M(n)_ e$ are surjective, we see that the inverse limit of the associated complexes are acyclic1. Hence the vanishing of cohomology of $\mathcal{H}$ by Proposition 60.21.1. $\square$

Proposition 60.21.3. Assumptions as in Proposition 60.21.1 but now assume that $\mathcal{F}$ is a crystal in quasi-coherent modules. Let $(M, \nabla )$ be the corresponding module with connection over $D$, see Proposition 60.17.4. Then the complex

\[ M \otimes ^\wedge _ D \Omega ^*_ D \]

computes $R\Gamma (\text{Cris}(X/S), \mathcal{F})$.

Proof. We will prove this using the two spectral sequences associated to the double complex $K^{*, *}$ with terms

\[ K^{a, b} = M \otimes _ D^\wedge \Omega ^ a_{D(b)} \]

What do we know so far? Well, Lemma 60.19.3 tells us that each column $K^{a, *}$, $a > 0$ is acyclic. Proposition 60.21.1 tells us that the first column $K^{0, *}$ is quasi-isomorphic to $R\Gamma (\text{Cris}(X/S), \mathcal{F})$. Hence the first spectral sequence associated to the double complex shows that there is a canonical quasi-isomorphism of $R\Gamma (\text{Cris}(X/S), \mathcal{F})$ with $\text{Tot}(K^{*, *})$.

Next, let's consider the rows $K^{*, b}$. By Lemma 60.17.1 each of the $b + 1$ maps $D \to D(b)$ presents $D(b)$ as the $p$-adic completion of a divided power polynomial algebra over $D$. Hence Lemma 60.20.2 shows that the map

\[ M \otimes ^\wedge _ D\Omega ^*_ D \longrightarrow M \otimes ^\wedge _{D(b)} \Omega ^*_{D(b)} = K^{*, b} \]

is a quasi-isomorphism. Note that each of these maps defines the same map on cohomology (and even the same map in the derived category) as the inverse is given by the co-diagonal map $D(b) \to D$ (corresponding to the multiplication map $P \otimes _ A \ldots \otimes _ A P \to P$). Hence if we look at the $E_1$ page of the second spectral sequence we obtain

\[ E_1^{a, b} = H^ a(M \otimes ^\wedge _ D\Omega ^*_ D) \]

with differentials

\[ E_1^{a, 0} \xrightarrow {0} E_1^{a, 1} \xrightarrow {1} E_1^{a, 2} \xrightarrow {0} E_1^{a, 3} \xrightarrow {1} \ldots \]

as each of these is the alternation sum of the given identifications $H^ a(M \otimes ^\wedge _ D\Omega ^*_ D) = E_1^{a, 0} = E_1^{a, 1} = \ldots $. Thus we see that the $E_2$ page is equal $H^ a(M \otimes ^\wedge _ D\Omega ^*_ D)$ on the first row and zero elsewhere. It follows that the identification of $M \otimes ^\wedge _ D\Omega ^*_ D$ with the first row induces a quasi-isomorphism of $M \otimes ^\wedge _ D\Omega ^*_ D$ with $\text{Tot}(K^{*, *})$. $\square$

Lemma 60.21.4. Assumptions as in Proposition 60.21.3. Let $A \to P' \to C$ be ring maps with $A \to P'$ smooth and $P' \to C$ surjective with kernel $J'$. Let $D'$ be the $p$-adic completion of $D_{P', \gamma }(J')$. Let $(M', \nabla ')$ be the pair over $D'$ corresponding to $\mathcal{F}$, see Lemma 60.17.5. Then the complex

\[ M' \otimes ^\wedge _{D'} \Omega ^*_{D'} \]

computes $R\Gamma (\text{Cris}(X/S), \mathcal{F})$.

Proof. Choose $a : D \to D'$ and $b : D' \to D$ as in Lemma 60.17.5. Note that the base change $M = M' \otimes _{D', b} D$ with its connection $\nabla $ corresponds to $\mathcal{F}$. Hence we know that $M \otimes ^\wedge _ D \Omega _ D^*$ computes the crystalline cohomology of $\mathcal{F}$, see Proposition 60.21.3. Hence it suffices to show that the base change maps (induced by $a$ and $b$)

\[ M' \otimes ^\wedge _{D'} \Omega ^*_{D'} \longrightarrow M \otimes ^\wedge _ D \Omega ^*_ D \quad \text{and}\quad M \otimes ^\wedge _ D \Omega ^*_ D \longrightarrow M' \otimes ^\wedge _{D'} \Omega ^*_{D'} \]

are quasi-isomorphisms. Since $a \circ b = \text{id}_{D'}$ we see that the composition one way around is the identity on the complex $M' \otimes ^\wedge _{D'} \Omega ^*_{D'}$. Hence it suffices to show that the map

\[ M \otimes ^\wedge _ D \Omega ^*_ D \longrightarrow M \otimes ^\wedge _ D \Omega ^*_ D \]

induced by $b \circ a : D \to D$ is a quasi-isomorphism. (Note that we have the same complex on both sides as $M = M' \otimes ^\wedge _{D', b} D$, hence $M \otimes ^\wedge _{D, b \circ a} D = M' \otimes ^\wedge _{D', b \circ a \circ b} D = M' \otimes ^\wedge _{D', b} D = M$.) In fact, we claim that for any divided power $A$-algebra homomorphism $\rho : D \to D$ compatible with the augmentation to $C$ the induced map $M \otimes ^\wedge _ D \Omega ^*_ D \to M \otimes ^\wedge _{D, \rho } \Omega ^*_ D$ is a quasi-isomorphism.

Write $\rho (x_ i) = x_ i + z_ i$. The elements $z_ i$ are in the divided power ideal of $D$ because $\rho $ is compatible with the augmentation to $C$. Hence we can factor the map $\rho $ as a composition

\[ D \xrightarrow {\sigma } D\langle \xi _ i \rangle ^\wedge \xrightarrow {\tau } D \]

where the first map is given by $x_ i \mapsto x_ i + \xi _ i$ and the second map is the divided power $D$-algebra map which maps $\xi _ i$ to $z_ i$. (This uses the universal properties of polynomial algebra, divided power polynomial algebras, divided power envelopes, and $p$-adic completion.) Note that there exists an automorphism $\alpha $ of $D\langle \xi _ i \rangle ^\wedge $ with $\alpha (x_ i) = x_ i - \xi _ i$ and $\alpha (\xi _ i) = \xi _ i$. Applying Lemma 60.20.2 to $\alpha \circ \sigma $ (which maps $x_ i$ to $x_ i$) and using that $\alpha $ is an isomorphism we conclude that $\sigma $ induces a quasi-isomorphism of $M \otimes ^\wedge _ D \Omega ^*_ D$ with $M \otimes ^\wedge _{D, \sigma } \Omega ^*_{D\langle x_ i \rangle ^\wedge }$. On the other hand the map $\tau $ has as a left inverse the map $D \to D\langle x_ i \rangle ^\wedge $, $x_ i \mapsto x_ i$ and we conclude (using Lemma 60.20.2 once more) that $\tau $ induces a quasi-isomorphism of $M \otimes ^\wedge _{D, \sigma } \Omega ^*_{D\langle x_ i \rangle ^\wedge }$ with $M \otimes ^\wedge _{D, \tau \circ \sigma } \Omega ^*_ D$. Composing these two quasi-isomorphisms we obtain that $\rho $ induces a quasi-isomorphism $M \otimes ^\wedge _ D \Omega ^*_ D \to M \otimes ^\wedge _{D, \rho } \Omega ^*_ D$ as desired. $\square$

[1] Actually, they are even homotopic to zero as the homotopies fit together, but we don't need this. The reason for this roundabout argument is that the limit $\mathop{\mathrm{lim}}\nolimits _ e M(n)_ e \otimes _{D(n)} \Omega ^ i_{D(n)}$ isn't the $p$-adic completion of $M(n) \otimes _{D(n)} \Omega ^ i_{D(n)}$ as with the assumptions of the lemma we don't know that $M(n)_ e = M(n)_{e + 1}/p^ eM(n)_{e + 1}$. If $\mathcal{F}$ is a crystal then this does hold.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07LE. Beware of the difference between the letter 'O' and the digit '0'.