The Stacks project

Lemma 68.7.1. Let $S$ be a scheme. Let $I$ be a directed set. Let $(X_ i, f_{ii'})$ be an inverse system over $I$ of algebraic spaces over $S$. Assume

  1. the morphisms $f_{ii'} : X_ i \to X_{i'}$ are affine,

  2. the spaces $X_ i$ are quasi-compact and quasi-separated.

Let $X = \mathop{\mathrm{lim}}\nolimits _ i X_ i$. Then the category of algebraic spaces of finite presentation over $X$ is the colimit over $I$ of the categories of algebraic spaces of finite presentation over $X_ i$.

Proof. Pick $0 \in I$. Choose a surjective étale morphism $U_0 \to X_0$ where $U_0$ is an affine scheme (Properties of Spaces, Lemma 64.6.3). Set $U_ i = X_ i \times _{X_0} U_0$. Set $R_0 = U_0 \times _{X_0} U_0$ and $R_ i = R_0 \times _{X_0} X_ i$. Denote $s_ i, t_ i : R_ i \to U_ i$ and $s, t : R \to U$ the two projections. In the proof of Lemma 68.4.1 we have seen that there exists a presentation $X = U/R$ with $U = \mathop{\mathrm{lim}}\nolimits U_ i$ and $R = \mathop{\mathrm{lim}}\nolimits R_ i$. Note that $U_ i$ and $U$ are affine and that $R_ i$ and $R$ are quasi-compact and separated (as $X_ i$ is quasi-separated). Let $Y$ be an algebraic space over $S$ and let $Y \to X$ be a morphism of finite presentation. Set $V = U \times _ X Y$. This is an algebraic space of finite presentation over $U$. Choose an affine scheme $W$ and a surjective étale morphism $W \to V$. Then $W \to Y$ is surjective étale as well. Set $R' = W \times _ Y W$ so that $Y = W/R'$ (see Spaces, Section 63.9). Note that $W$ is a scheme of finite presentation over $U$ and that $R'$ is a scheme of finite presentation over $R$ (details omitted). By Limits, Lemma 32.10.1 we can find an index $i$ and a morphism of schemes $W_ i \to U_ i$ of finite presentation whose base change to $U$ gives $W \to U$. Similarly we can find, after possibly increasing $i$, a scheme $R'_ i$ of finite presentation over $R_ i$ whose base change to $R$ is $R'$. The projection morphisms $s', t' : R' \to W$ are morphisms over the projection morphisms $s, t : R \to U$. Hence we can view $s'$, resp. $t'$ as a morphism between schemes of finite presentation over $U$ (with structure morphism $R' \to U$ given by $R' \to R$ followed by $s$, resp. $t$). Hence we can apply Limits, Lemma 32.10.1 again to see that, after possibly increasing $i$, there exist morphisms $s'_ i, t'_ i : R'_ i \to W_ i$, whose base change to $U$ is $S', t'$. By Limits, Lemmas 32.8.10 and 32.8.13 we may assume that $s'_ i, t'_ i$ are étale and that $j'_ i : R'_ i \to W_ i \times _{X_ i} W_ i$ is a monomorphism (here we view $j'_ i$ as a morphism of schemes of finite presentation over $U_ i$ via one of the projections – it doesn't matter which one). Setting $Y_ i = W_ i/R'_ i$ (see Spaces, Theorem 63.10.5) we obtain an algebraic space of finite presentation over $X_ i$ whose base change to $X$ is isomorphic to $Y$.

This shows that every algebraic space of finite presentation over $X$ comes from an algebraic space of finite presentation over some $X_ i$, i.e., it shows that the functor of the lemma is essentially surjective. To show that it is fully faithful, consider an index $0 \in I$ and two algebraic spaces $Y_0, Z_0$ of finite presentation over $X_0$. Set $Y_ i = X_ i \times _{X_0} Y_0$, $Y = X \times _{X_0} Y_0$, $Z_ i = X_ i \times _{X_0} Z_0$, and $Z = X \times _{X_0} Z_0$. Let $\alpha : Y \to Z$ be a morphism of algebraic spaces over $X$. Choose a surjective étale morphism $V_0 \to Y_0$ where $V_0$ is an affine scheme. Set $V_ i = V_0 \times _{Y_0} Y_ i$ and $V = V_0 \times _{Y_0} Y$ which are affine schemes endowed with surjective étale morphisms to $Y_ i$ and $Y$. The composition $V \to Y \to Z \to Z_0$ comes from a (essentially unique) morphism $V_ i \to Z_0$ for some $i \geq 0$ by Proposition 68.3.8 (applied to $Z_0 \to X_0$ which is of finite presentation by assumption). After increasing $i$ the two compositions

\[ V_ i \times _{Y_ i} V_ i \to V_ i \to Z_0 \]

are equal as this is true in the limit. Hence we obtain a (essentially unique) morphism $Y_ i \to Z_0$. Since this is a morphism over $X_0$ it induces a morphism into $Z_ i = Z_0 \times _{X_0} X_ i$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07SK. Beware of the difference between the letter 'O' and the digit '0'.