Lemma 69.14.4. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $\mathcal{P}$ be a property of coherent sheaves on $X$. Assume
For any short exact sequence of coherent sheaves
\[ 0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0 \]if $\mathcal{F}_ i$, $i = 1, 2$ have property $\mathcal{P}$ then so does $\mathcal{F}$.
For every reduced closed subspace $Z \subset X$ with $|Z|$ irreducible and every quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_ Z$ we have $\mathcal{P}$ for $i_*\mathcal{I}$.
Then property $\mathcal{P}$ holds for every coherent sheaf on $X$.
Comments (0)