The Stacks project

65.14 Devissage of coherent sheaves

This section is the analogue of Cohomology of Schemes, Section 29.12.

Lemma 65.14.1. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $\mathcal{F}$ be a coherent sheaf on $X$. Suppose that $\text{Supp}(\mathcal{F}) = Z \cup Z'$ with $Z$, $Z'$ closed. Then there exists a short exact sequence of coherent sheaves

\[ 0 \to \mathcal{G}' \to \mathcal{F} \to \mathcal{G} \to 0 \]

with $\text{Supp}(\mathcal{G}') \subset Z'$ and $\text{Supp}(\mathcal{G}) \subset Z$.

Proof. Let $\mathcal{I} \subset \mathcal{O}_ X$ be the sheaf of ideals defining the reduced induced closed subspace structure on $Z$, see Properties of Spaces, Lemma 62.12.4. Consider the subsheaves $\mathcal{G}'_ n = \mathcal{I}^ n\mathcal{F}$ and the quotients $\mathcal{G}_ n = \mathcal{F}/\mathcal{I}^ n\mathcal{F}$. For each $n$ we have a short exact sequence

\[ 0 \to \mathcal{G}'_ n \to \mathcal{F} \to \mathcal{G}_ n \to 0 \]

For every geometric point $\overline{x}$ of $Z' \setminus Z$ we have $\mathcal{I}_{\overline{x}} = \mathcal{O}_{X, \overline{x}}$ and hence $\mathcal{G}_{n, \overline{x}} = 0$. Thus we see that $\text{Supp}(\mathcal{G}_ n) \subset Z$. Note that $X \setminus Z'$ is a Noetherian algebraic space. Hence by Lemma 65.13.2 there exists an $n$ such that $\mathcal{G}'_ n|_{X \setminus Z'} = \mathcal{I}^ n\mathcal{F}|_{X \setminus Z'} = 0$. For such an $n$ we see that $\text{Supp}(\mathcal{G}'_ n) \subset Z'$. Thus setting $\mathcal{G}' = \mathcal{G}'_ n$ and $\mathcal{G} = \mathcal{G}_ n$ works. $\square$

In the following we will freely use the scheme theoretic support of finite type modules as defined in Morphisms of Spaces, Definition 63.15.4.

Lemma 65.14.2. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $\mathcal{F}$ be a coherent sheaf on $X$. Assume that the scheme theoretic support of $\mathcal{F}$ is a reduced $Z \subset X$ with $|Z|$ irreducible. Then there exist an integer $r > 0$, a nonzero sheaf of ideals $\mathcal{I} \subset \mathcal{O}_ Z$, and an injective map of coherent sheaves

\[ i_*\left(\mathcal{I}^{\oplus r}\right) \to \mathcal{F} \]

whose cokernel is supported on a proper closed subspace of $Z$.

Proof. By assumption there exists a coherent $\mathcal{O}_ Z$-module $\mathcal{G}$ with support $Z$ and $\mathcal{F} \cong i_*\mathcal{G}$, see Lemma 65.12.7. Hence it suffices to prove the lemma for the case $Z = X$ and $i = \text{id}$.

By Properties of Spaces, Proposition 62.13.3 there exists a dense open subspace $U \subset X$ which is a scheme. Note that $U$ is a Noetherian integral scheme. After shrinking $U$ we may assume that $\mathcal{F}|_ U \cong \mathcal{O}_ U^{\oplus r}$ (for example by Cohomology of Schemes, Lemma 29.12.2 or by a direct algebra argument). Let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals whose associated closed subspace is the complement of $U$ in $X$ (see for example Properties of Spaces, Section 62.12). By Lemma 65.13.4 there exists an $n \geq 0$ and a morphism $\mathcal{I}^ n(\mathcal{O}_ X^{\oplus r}) \to \mathcal{F}$ which recovers our isomorphism over $U$. Since $\mathcal{I}^ n(\mathcal{O}_ X^{\oplus r}) = (\mathcal{I}^ n)^{\oplus r}$ we get a map as in the lemma. It is injective: namely, if $\sigma $ is a nonzero section of $\mathcal{I}^{\oplus r}$ over a scheme $W$ ├ętale over $X$, then because $X$ hence $W$ is reduced the support of $\sigma $ contains a nonempty open of $W$. But the kernel of $(\mathcal{I}^ n)^{\oplus r} \to \mathcal{F}$ is zero over a dense open, hence $\sigma $ cannot be a section of the kernel. $\square$

Lemma 65.14.3. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $\mathcal{F}$ be a coherent sheaf on $X$. There exists a filtration

\[ 0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_ m = \mathcal{F} \]

by coherent subsheaves such that for each $j = 1, \ldots , m$ there exists a reduced closed subspace $Z_ j \subset X$ with $|Z_ j|$ irreducible and a sheaf of ideals $\mathcal{I}_ j \subset \mathcal{O}_{Z_ j}$ such that

\[ \mathcal{F}_ j/\mathcal{F}_{j - 1} \cong (Z_ j \to X)_* \mathcal{I}_ j \]

Proof. Consider the collection

\[ \mathcal{T} = \left\{ \begin{matrix} T \subset |X| \text{ closed such that there exists a coherent sheaf } \mathcal{F} \\ \text{ with } \text{Supp}(\mathcal{F}) = T \text{ for which the lemma is wrong} \end{matrix} \right\} \]

We are trying to show that $\mathcal{T}$ is empty. If not, then because $|X|$ is Noetherian (Properties of Spaces, Lemma 62.24.2) we can choose a minimal element $T \in \mathcal{T}$. This means that there exists a coherent sheaf $\mathcal{F}$ on $X$ whose support is $T$ and for which the lemma does not hold. Clearly $T \not= \emptyset $ since the only sheaf whose support is empty is the zero sheaf for which the lemma does hold (with $m = 0$).

If $T$ is not irreducible, then we can write $T = Z_1 \cup Z_2$ with $Z_1, Z_2$ closed and strictly smaller than $T$. Then we can apply Lemma 65.14.1 to get a short exact sequence of coherent sheaves

\[ 0 \to \mathcal{G}_1 \to \mathcal{F} \to \mathcal{G}_2 \to 0 \]

with $\text{Supp}(\mathcal{G}_ i) \subset Z_ i$. By minimality of $T$ each of $\mathcal{G}_ i$ has a filtration as in the statement of the lemma. By considering the induced filtration on $\mathcal{F}$ we arrive at a contradiction. Hence we conclude that $T$ is irreducible.

Suppose $T$ is irreducible. Let $\mathcal{J}$ be the sheaf of ideals defining the reduced induced closed subspace structure on $T$, see Properties of Spaces, Lemma 62.12.4. By Lemma 65.13.2 we see there exists an $n \geq 0$ such that $\mathcal{J}^ n\mathcal{F} = 0$. Hence we obtain a filtration

\[ 0 = \mathcal{I}^ n\mathcal{F} \subset \mathcal{I}^{n - 1}\mathcal{F} \subset \ldots \subset \mathcal{I}\mathcal{F} \subset \mathcal{F} \]

each of whose successive subquotients is annihilated by $\mathcal{J}$. Hence if each of these subquotients has a filtration as in the statement of the lemma then also $\mathcal{F}$ does. In other words we may assume that $\mathcal{J}$ does annihilate $\mathcal{F}$.

Assume $T$ is irreducible and $\mathcal{J}\mathcal{F} = 0$ where $\mathcal{J}$ is as above. Then the scheme theoretic support of $\mathcal{F}$ is $T$, see Morphisms of Spaces, Lemma 63.14.1. Hence we can apply Lemma 65.14.2. This gives a short exact sequence

\[ 0 \to i_*(\mathcal{I}^{\oplus r}) \to \mathcal{F} \to \mathcal{Q} \to 0 \]

where the support of $\mathcal{Q}$ is a proper closed subset of $T$. Hence we see that $\mathcal{Q}$ has a filtration of the desired type by minimality of $T$. But then clearly $\mathcal{F}$ does too, which is our final contradiction. $\square$

Lemma 65.14.4. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $\mathcal{P}$ be a property of coherent sheaves on $X$. Assume

  1. For any short exact sequence of coherent sheaves

    \[ 0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0 \]

    if $\mathcal{F}_ i$, $i = 1, 2$ have property $\mathcal{P}$ then so does $\mathcal{F}$.

  2. For every reduced closed subspace $Z \subset X$ with $|Z|$ irreducible and every quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_ Z$ we have $\mathcal{P}$ for $i_*\mathcal{I}$.

Then property $\mathcal{P}$ holds for every coherent sheaf on $X$.

Proof. First note that if $\mathcal{F}$ is a coherent sheaf with a filtration

\[ 0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_ m = \mathcal{F} \]

by coherent subsheaves such that each of $\mathcal{F}_ i/\mathcal{F}_{i - 1}$ has property $\mathcal{P}$, then so does $\mathcal{F}$. This follows from the property (1) for $\mathcal{P}$. On the other hand, by Lemma 65.14.3 we can filter any $\mathcal{F}$ with successive subquotients as in (2). Hence the lemma follows. $\square$

Here is a more useful variant of the lemma above.

Lemma 65.14.5. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $\mathcal{P}$ be a property of coherent sheaves on $X$. Assume

  1. For any short exact sequence of coherent sheaves

    \[ 0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0 \]

    if $\mathcal{F}_ i$, $i = 1, 2$ have property $\mathcal{P}$ then so does $\mathcal{F}$.

  2. If $\mathcal{P}$ holds for $\mathcal{F}^{\oplus r}$ for some $r \geq 1$, then it holds for $\mathcal{F}$.

  3. For every reduced closed subspace $i : Z \to X$ with $|Z|$ irreducible there exists a coherent sheaf $\mathcal{G}$ on $Z$ such that

    1. $\text{Supp}(\mathcal{G}) = Z$,

    2. for every nonzero quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_ Z$ there exists a quasi-coherent subsheaf $\mathcal{G}' \subset \mathcal{I}\mathcal{G}$ such that $\text{Supp}(\mathcal{G}/\mathcal{G}')$ is proper closed in $Z$ and such that $\mathcal{P}$ holds for $i_*\mathcal{G}'$.

Then property $\mathcal{P}$ holds for every coherent sheaf on $X$.

Proof. Consider the collection

\[ \mathcal{T} = \left\{ \begin{matrix} T \subset |X| \text{ nonempty closed such that there exists a coherent sheaf } \\ \mathcal{F} \text{ with } \text{Supp}(\mathcal{F}) = T \text{ for which the lemma is wrong} \end{matrix} \right\} \]

We are trying to show that $\mathcal{T}$ is empty. If not, then because $|X|$ is Noetherian (Properties of Spaces, Lemma 62.24.2) we can choose a minimal element $T \in \mathcal{T}$. This means that there exists a coherent sheaf $\mathcal{F}$ on $X$ whose support is $T$ and for which the lemma does not hold.

If $T$ is not irreducible, then we can write $T = Z_1 \cup Z_2$ with $Z_1, Z_2$ closed and strictly smaller than $T$. Then we can apply Lemma 65.14.1 to get a short exact sequence of coherent sheaves

\[ 0 \to \mathcal{G}_1 \to \mathcal{F} \to \mathcal{G}_2 \to 0 \]

with $\text{Supp}(\mathcal{G}_ i) \subset Z_ i$. By minimality of $T$ each of $\mathcal{G}_ i$ has $\mathcal{P}$. Hence $\mathcal{F}$ has property $\mathcal{P}$ by (1), a contradiction.

Suppose $T$ is irreducible. Let $\mathcal{J}$ be the sheaf of ideals defining the reduced induced closed subspace structure on $T$, see Properties of Spaces, Lemma 62.12.4. By Lemma 65.13.2 we see there exists an $n \geq 0$ such that $\mathcal{J}^ n\mathcal{F} = 0$. Hence we obtain a filtration

\[ 0 = \mathcal{J}^ n\mathcal{F} \subset \mathcal{J}^{n - 1}\mathcal{F} \subset \ldots \subset \mathcal{J}\mathcal{F} \subset \mathcal{F} \]

each of whose successive subquotients is annihilated by $\mathcal{J}$. Hence if each of these subquotients has a filtration as in the statement of the lemma then also $\mathcal{F}$ does by (1). In other words we may assume that $\mathcal{J}$ does annihilate $\mathcal{F}$.

Assume $T$ is irreducible and $\mathcal{J}\mathcal{F} = 0$ where $\mathcal{J}$ is as above. Denote $i : Z \to X$ the closed subspace corresponding to $\mathcal{J}$. Then $\mathcal{F} = i_*\mathcal{H}$ for some coherent $\mathcal{O}_ Z$-module $\mathcal{H}$, see Morphisms of Spaces, Lemma 63.14.1 and Lemma 65.12.7. Let $\mathcal{G}$ be the coherent sheaf on $Z$ satisfying (3)(a) and (3)(b). We apply Lemma 65.14.2 to get injective maps

\[ \mathcal{I}_1^{\oplus r_1} \to \mathcal{H} \quad \text{and}\quad \mathcal{I}_2^{\oplus r_2} \to \mathcal{G} \]

where the support of the cokernels are proper closed in $Z$. Hence we find an nonempty open $V \subset Z$ such that

\[ \mathcal{H}^{\oplus r_2}_ V \cong \mathcal{G}^{\oplus r_1}_ V \]

Let $\mathcal{I} \subset \mathcal{O}_ Z$ be a quasi-coherent ideal sheaf cutting out $Z \setminus V$ we obtain (Lemma 65.13.4) a map

\[ \mathcal{I}^ n\mathcal{G}^{\oplus r_1} \longrightarrow \mathcal{H}^{\oplus r_2} \]

which is an isomorphism over $V$. The kernel is supported on $Z \setminus V$ hence annihilated by some power of $\mathcal{I}$, see Lemma 65.13.2. Thus after increasing $n$ we may assume the displayed map is injective, see Lemma 65.13.3. Applying (3)(b) we find $\mathcal{G}' \subset \mathcal{I}^ n\mathcal{G}$ such that

\[ (i_*\mathcal{G}')^{\oplus r_1} \longrightarrow i_*\mathcal{H}^{\oplus r_2} = \mathcal{F}^{\oplus r_2} \]

is injective with cokernel supported in a proper closed subset of $Z$ and such that property $\mathcal{P}$ holds for $i_*\mathcal{G}'$. By (1) property $\mathcal{P}$ holds for $(i_*\mathcal{G}')^{\oplus r_1}$. By (1) and minimality of $T = |Z|$ property $\mathcal{P}$ holds for $\mathcal{F}^{\oplus r_2}$. And finally by (2) property $\mathcal{P}$ holds for $\mathcal{F}$ which is the desired contradiction. $\square$

Lemma 65.14.6. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $\mathcal{P}$ be a property of coherent sheaves on $X$. Assume

  1. For any short exact sequence of coherent sheaves on $X$ if two out of three have property $\mathcal{P}$ so does the third.

  2. If $\mathcal{P}$ holds for $\mathcal{F}^{\oplus r}$ for some $r \geq 1$, then it holds for $\mathcal{F}$.

  3. For every reduced closed subspace $i : Z \to X$ with $|Z|$ irreducible there exists a coherent sheaf $\mathcal{G}$ on $X$ whose scheme theoretic support is $Z$ such that $\mathcal{P}$ holds for $\mathcal{G}$.

Then property $\mathcal{P}$ holds for every coherent sheaf on $X$.

Proof. We will show that conditions (1) and (2) of Lemma 65.14.4 hold. This is clear for condition (1). To show that (2) holds, let

\[ \mathcal{T} = \left\{ \begin{matrix} i : Z \to X \text{ reduced closed subspace with }|Z|\text{ irreducible such} \\ \text{ that }i_*\mathcal{I}\text{ does not have }\mathcal{P} \text{ for some quasi-coherent }\mathcal{I} \subset \mathcal{O}_ Z \end{matrix} \right\} \]

If $\mathcal{T}$ is nonempty, then since $X$ is Noetherian, we can find an $i : Z \to X$ which is minimal in $\mathcal{T}$. We will show that this leads to a contradiction.

Let $\mathcal{G}$ be the sheaf whose scheme theoretic support is $Z$ whose existence is assumed in assumption (3). Let $\varphi : i_*\mathcal{I}^{\oplus r} \to \mathcal{G}$ be as in Lemma 65.14.2. Let

\[ 0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_ m = \mathop{\mathrm{Coker}}(\varphi ) \]

be a filtration as in Lemma 65.14.3. By minimality of $Z$ and assumption (1) we see that $\mathop{\mathrm{Coker}}(\varphi )$ has property $\mathcal{P}$. As $\varphi $ is injective we conclude using assumption (1) once more that $i_*\mathcal{I}^{\oplus r}$ has property $\mathcal{P}$. Using assumption (2) we conclude that $i_*\mathcal{I}$ has property $\mathcal{P}$.

Finally, if $\mathcal{J} \subset \mathcal{O}_ Z$ is a second quasi-coherent sheaf of ideals, set $\mathcal{K} = \mathcal{I} \cap \mathcal{J}$ and consider the short exact sequences

\[ 0 \to \mathcal{K} \to \mathcal{I} \to \mathcal{I}/\mathcal{K} \to 0 \quad \text{and} \quad 0 \to \mathcal{K} \to \mathcal{J} \to \mathcal{J}/\mathcal{K} \to 0 \]

Arguing as above, using the minimality of $Z$, we see that $i_*\mathcal{I}/\mathcal{K}$ and $i_*\mathcal{J}/\mathcal{K}$ satisfy $\mathcal{P}$. Hence by assumption (1) we conclude that $i_*\mathcal{K}$ and then $i_*\mathcal{J}$ satisfy $\mathcal{P}$. In other words, $Z$ is not an element of $\mathcal{T}$ which is the desired contradiction. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07UN. Beware of the difference between the letter 'O' and the digit '0'.