The Stacks project

Lemma 68.14.5. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $\mathcal{P}$ be a property of coherent sheaves on $X$. Assume

  1. For any short exact sequence of coherent sheaves

    \[ 0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0 \]

    if $\mathcal{F}_ i$, $i = 1, 2$ have property $\mathcal{P}$ then so does $\mathcal{F}$.

  2. If $\mathcal{P}$ holds for $\mathcal{F}^{\oplus r}$ for some $r \geq 1$, then it holds for $\mathcal{F}$.

  3. For every reduced closed subspace $i : Z \to X$ with $|Z|$ irreducible there exists a coherent sheaf $\mathcal{G}$ on $Z$ such that

    1. $\text{Supp}(\mathcal{G}) = Z$,

    2. for every nonzero quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_ Z$ there exists a quasi-coherent subsheaf $\mathcal{G}' \subset \mathcal{I}\mathcal{G}$ such that $\text{Supp}(\mathcal{G}/\mathcal{G}')$ is proper closed in $|Z|$ and such that $\mathcal{P}$ holds for $i_*\mathcal{G}'$.

Then property $\mathcal{P}$ holds for every coherent sheaf on $X$.

Proof. Consider the collection

\[ \mathcal{T} = \left\{ \begin{matrix} T \subset |X| \text{ nonempty closed such that there exists a coherent sheaf } \\ \mathcal{F} \text{ with } \text{Supp}(\mathcal{F}) = T \text{ for which the lemma is wrong} \end{matrix} \right\} \]

We are trying to show that $\mathcal{T}$ is empty. If not, then because $|X|$ is Noetherian (Properties of Spaces, Lemma 65.24.2) we can choose a minimal element $T \in \mathcal{T}$. This means that there exists a coherent sheaf $\mathcal{F}$ on $X$ whose support is $T$ and for which the lemma does not hold.

If $T$ is not irreducible, then we can write $T = Z_1 \cup Z_2$ with $Z_1, Z_2$ closed and strictly smaller than $T$. Then we can apply Lemma 68.14.1 to get a short exact sequence of coherent sheaves

\[ 0 \to \mathcal{G}_1 \to \mathcal{F} \to \mathcal{G}_2 \to 0 \]

with $\text{Supp}(\mathcal{G}_ i) \subset Z_ i$. By minimality of $T$ each of $\mathcal{G}_ i$ has $\mathcal{P}$. Hence $\mathcal{F}$ has property $\mathcal{P}$ by (1), a contradiction.

Suppose $T$ is irreducible. Let $\mathcal{J}$ be the sheaf of ideals defining the reduced induced closed subspace structure on $T$, see Properties of Spaces, Lemma 65.12.3. By Lemma 68.13.2 we see there exists an $n \geq 0$ such that $\mathcal{J}^ n\mathcal{F} = 0$. Hence we obtain a filtration

\[ 0 = \mathcal{J}^ n\mathcal{F} \subset \mathcal{J}^{n - 1}\mathcal{F} \subset \ldots \subset \mathcal{J}\mathcal{F} \subset \mathcal{F} \]

each of whose successive subquotients is annihilated by $\mathcal{J}$. Hence if each of these subquotients has a filtration as in the statement of the lemma then also $\mathcal{F}$ does by (1). In other words we may assume that $\mathcal{J}$ does annihilate $\mathcal{F}$.

Assume $T$ is irreducible and $\mathcal{J}\mathcal{F} = 0$ where $\mathcal{J}$ is as above. Denote $i : Z \to X$ the closed subspace corresponding to $\mathcal{J}$. Then $\mathcal{F} = i_*\mathcal{H}$ for some coherent $\mathcal{O}_ Z$-module $\mathcal{H}$, see Morphisms of Spaces, Lemma 66.14.1 and Lemma 68.12.7. Let $\mathcal{G}$ be the coherent sheaf on $Z$ satisfying (3)(a) and (3)(b). We apply Lemma 68.14.2 to get injective maps

\[ \mathcal{I}_1^{\oplus r_1} \to \mathcal{H} \quad \text{and}\quad \mathcal{I}_2^{\oplus r_2} \to \mathcal{G} \]

where the support of the cokernels are proper closed in $Z$. Hence we find an nonempty open $V \subset Z$ such that

\[ \mathcal{H}^{\oplus r_2}_ V \cong \mathcal{G}^{\oplus r_1}_ V \]

Let $\mathcal{I} \subset \mathcal{O}_ Z$ be a quasi-coherent ideal sheaf cutting out $Z \setminus V$ we obtain (Lemma 68.13.4) a map

\[ \mathcal{I}^ n\mathcal{G}^{\oplus r_1} \longrightarrow \mathcal{H}^{\oplus r_2} \]

which is an isomorphism over $V$. The kernel is supported on $Z \setminus V$ hence annihilated by some power of $\mathcal{I}$, see Lemma 68.13.2. Thus after increasing $n$ we may assume the displayed map is injective, see Lemma 68.13.3. Applying (3)(b) we find $\mathcal{G}' \subset \mathcal{I}^ n\mathcal{G}$ such that

\[ (i_*\mathcal{G}')^{\oplus r_1} \longrightarrow i_*\mathcal{H}^{\oplus r_2} = \mathcal{F}^{\oplus r_2} \]

is injective with cokernel supported in a proper closed subset of $Z$ and such that property $\mathcal{P}$ holds for $i_*\mathcal{G}'$. By (1) property $\mathcal{P}$ holds for $(i_*\mathcal{G}')^{\oplus r_1}$. By (1) and minimality of $T = |Z|$ property $\mathcal{P}$ holds for $\mathcal{F}^{\oplus r_2}$. And finally by (2) property $\mathcal{P}$ holds for $\mathcal{F}$ which is the desired contradiction. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07UT. Beware of the difference between the letter 'O' and the digit '0'.