The Stacks project

Lemma 70.15.4. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Assume $f$ is integral and induces a bijection $|X| \to |Y|$. Then $X$ is a scheme if and only if $Y$ is a scheme.

Proof. An integral morphism is representable by definition, hence if $Y$ is a scheme, so is $X$. Conversely, assume that $X$ is a scheme. Let $U \subset X$ be an affine open. An integral morphism is closed and $|f|$ is bijective, hence $|f|(|U|) \subset |Y|$ is open as the complement of $|f|(|X| \setminus |U|)$. Let $V \subset Y$ be the open subspace with $|V| = |f|(|U|)$, see Properties of Spaces, Lemma 66.4.8. Then $U \to V$ is integral and surjective, hence $V$ is an affine scheme by Proposition 70.15.2. This concludes the proof. $\square$

Comments (0)

There are also:

  • 1 comment(s) on Section 70.15: Characterizing affine spaces

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07VV. Beware of the difference between the letter 'O' and the digit '0'.