Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 70.15.5. Let $S$ be a scheme. Let $f : X \to B$ and $B' \to B$ be morphisms of algebraic spaces over $S$. Assume

  1. $B' \to B$ is a closed immersion,

  2. $|B'| \to |B|$ is bijective,

  3. $X \times _ B B' \to B'$ is a closed immersion, and

  4. $X \to B$ is of finite type or $B' \to B$ is of finite presentation.

Then $f : X \to B$ is a closed immersion.

Proof. Assumptions (1) and (2) imply that $B_{red} = B'_{red}$. Set $X' = X \times _ B B'$. Then $X' \to X$ is closed immersion and $X'_{red} = X_{red}$. Let $U \to B$ be an étale morphism with $U$ affine. Then $X' \times _ B U \to X \times _ B U$ is a closed immersion of algebraic spaces inducing an isomorphism on underlying reduced spaces. Since $X' \times _ B U$ is a scheme (as $B' \to B$ and $X' \to B'$ are representable) so is $X \times _ B U$ by Lemma 70.15.3. Hence $X \to B$ is representable too. Thus we reduce to the case of schemes, see Morphisms, Lemma 29.45.7. $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 70.15: Characterizing affine spaces

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.