The Stacks project

Lemma 81.6.7. In the situation of Lemma 81.6.5. If $V' = G(V, U', \varphi )$ for some triple $(V, U', \varphi )$, then

  1. $V' \to Y'$ is locally of finite type if and only if $V \to Y$ and $U' \to X'$ are locally of finite type,

  2. $V' \to Y'$ is flat if and only if $V \to Y$ and $U' \to X'$ are flat,

  3. $V' \to Y'$ is flat and locally of finite presentation if and only if $V \to Y$ and $U' \to X'$ are flat and locally of finite presentation,

  4. $V' \to Y'$ is smooth if and only if $V \to Y$ and $U' \to X'$ are smooth,

  5. $V' \to Y'$ is étale if and only if $V \to Y$ and $U' \to X'$ are étale, and

  6. add more here as needed.

If $W'$ is flat over $Y'$, then the adjunction mapping $G(F(W')) \to W'$ is an isomorphism. Hence $F$ and $G$ define mutually quasi-inverse functors between the category of spaces flat over $Y'$ and the category of triples $(V, U', \varphi )$ with $V \to Y$ and $U' \to X'$ flat.

Proof. Choose a diagram (81.6.5.1) as in the proof of Lemma 81.6.5.

Proof of (1) – (5). Let $(V, U', \varphi )$ be an object of $(\textit{Spaces}/Y) \times _{(\textit{Spaces}/Y')} (\textit{Spaces}/X')$. Construct a diagram (81.6.5.2) as in the proof of Lemma 81.6.5. Then the base change of $G(V, U', \varphi ) \to Y'$ to $Y'_1$ is $G_1(V_1, U_1', \varphi _1) \to Y_1'$. Hence (1) – (5) follow immediately from the corresponding statements of More on Morphisms, Lemma 37.14.6 for schemes.

Suppose that $W' \to Y'$ is flat. Choose a scheme $W'_1$ and a surjective étale morphism $W'_1 \to Y_1' \times _{Y'} W'$. Observe that $W'_1 \to W'$ is surjective étale as a composition of surjective étale morphisms. We know that $G_1(F_1(W_1')) \to W_1'$ is an isomorphism by More on Morphisms, Lemma 37.14.6 applied to $W'_1$ over $Y'_1$ and the front of the diagram (with functors $G_1$ and $F_1$ as in the proof of Lemma 81.6.5). Then the construction of $G(F(W'))$ (as a pushout, i.e., as constructed in Lemma 81.6.2) shows that $G_1(F_1(W'_1)) \to G(F(W))$ is surjective étale. Whereupon we conclude that $G(F(W)) \to W$ is étale, see for example Properties of Spaces, Lemma 66.16.3. But $G(F(W)) \to W$ is an isomorphism on underlying reduced algebraic spaces (by construction), hence it is an isomorphism. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07W3. Beware of the difference between the letter 'O' and the digit '0'.