The Stacks project

Lemma 89.29.4. With notation and assumptions as in Situation 89.29.1. Assume $\mathcal{F}$ is a deformation category. Then there is a canonical $l$-vector space isomorphism

\[ \text{Inf}(\mathcal{F}) \otimes _ k l \longrightarrow \text{Inf}(\mathcal{F}_{l/k}) \]

of infinitesimal automorphism spaces.

Proof. Let $x_0 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(k))$ and denote $x_{l, 0}$ the corresponding object of $\mathcal{F}_{l/k}$ over $l$. Recall that $\text{Inf}(\mathcal{F}) = \text{Inf}_{x_0}(\mathcal{F})$ and $\text{Inf}(\mathcal{F}_{l/k}) = \text{Inf}_{x_{l, 0}}(\mathcal{F}_{l/k})$, see Remark 89.19.4. Recall that the vector space structure on $\text{Inf}_{x_0}(\mathcal{F})$ comes from identifying it with the tangent space of the functor $\mathit{Aut}(x_0)$ which is defined on the category $\mathcal{C}_{k, k}$ of Artinian local $k$-algebras with residue field $k$. Similarly, $\text{Inf}_{x_{l, 0}}(\mathcal{F}_{l/k})$ is the tangent space of $\mathit{Aut}(x_{l, 0})$ which is defined on the category $\mathcal{C}_{l, l}$ of Artinian local $l$-algebras with residue field $l$. Unwinding the definitions we see that $\mathit{Aut}(x_{l, 0})$ is the restriction of $\mathit{Aut}(x_0)_{l/k}$ (which lives on $\mathcal{C}_{k, l}$) to $\mathcal{C}_{l, l}$. Since there is no difference between the tangent space of $\mathit{Aut}(x_0)_{l/k}$ seen as a functor on $\mathcal{C}_{k, l}$ or $\mathcal{C}_{l, l}$, the lemma follows from Lemma 89.29.3 and the fact that $\mathit{Aut}(x_0)$ satisfies (RS) by Lemma 89.19.6 (whence we have (S2) by Lemma 89.16.6). $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07WC. Beware of the difference between the letter 'O' and the digit '0'.