Lemma 32.4.16. Let $S$ be a scheme. Let $X = \mathop{\mathrm{lim}}\nolimits X_ i$ be a directed limit of schemes over $S$ with affine transition morphisms. Let $Y \to X$ be a morphism of schemes over $S$.

1. If $Y \to X$ is a closed immersion, $X_ i$ quasi-compact, and $Y$ locally of finite type over $S$, then $Y \to X_ i$ is a closed immersion for $i$ large enough.

2. If $Y \to X$ is an immersion, $X_ i$ quasi-separated, $Y \to S$ locally of finite type, and $Y$ quasi-compact, then $Y \to X_ i$ is an immersion for $i$ large enough.

3. If $Y \to X$ is an isomorphism, $X_ i$ quasi-compact, $X_ i \to S$ locally of finite type, the transition morphisms $X_{i'} \to X_ i$ are closed immersions, and $Y \to S$ is locally of finite presentation, then $Y \to X_ i$ is an isomorphism for $i$ large enough.

Proof. Proof of (1). Choose $0 \in I$ and a finite affine open covering $X_0 = U_{0, 1} \cup \ldots \cup U_{0, m}$ with the property that $U_{0, j}$ maps into an affine open $W_ j \subset S$. Let $V_ j \subset Y$, resp. $U_{i, j} \subset X_ i$, $i \geq 0$, resp. $U_ j \subset X$ be the inverse image of $U_{0, j}$. It suffices to prove that $V_ j \to U_{i, j}$ is a closed immersion for $i$ sufficiently large and we know that $V_ j \to U_ j$ is a closed immersion. Thus we reduce to the following algebra fact: If $A = \mathop{\mathrm{colim}}\nolimits A_ i$ is a directed colimit of $R$-algebras, $A \to B$ is a surjection of $R$-algebras, and $B$ is a finitely generated $R$-algebra, then $A_ i \to B$ is surjective for $i$ sufficiently large.

Proof of (2). Choose $0 \in I$. Choose a quasi-compact open $X'_0 \subset X_0$ such that $Y \to X_0$ factors through $X'_0$. After replacing $X_ i$ by the inverse image of $X'_0$ for $i \geq 0$ we may assume all $X_ i'$ are quasi-compact and quasi-separated. Let $U \subset X$ be a quasi-compact open such that $Y \to X$ factors through a closed immersion $Y \to U$ ($U$ exists as $Y$ is quasi-compact). By Lemma 32.4.11 we may assume that $U = \mathop{\mathrm{lim}}\nolimits U_ i$ with $U_ i \subset X_ i$ quasi-compact open. By part (1) we see that $Y \to U_ i$ is a closed immersion for some $i$. Thus (2) holds.

Proof of (3). Working affine locally on $X_0$ for some $0 \in I$ as in the proof of (1) we reduce to the following algebra fact: If $A = \mathop{\mathrm{lim}}\nolimits A_ i$ is a directed colimit of $R$-algebras with surjective transition maps and $A$ of finite presentation over $A_0$, then $A = A_ i$ for some $i$. Namely, write $A = A_0/(f_1, \ldots , f_ n)$. Pick $i$ such that $f_1, \ldots , f_ n$ map to zero under the surjective map $A_0 \to A_ i$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 081B. Beware of the difference between the letter 'O' and the digit '0'.