Lemma 31.4.15. In Situation 31.4.5 let $\mathcal{L}_0$ be an invertible sheaf of modules on $S_0$. If the pullback $\mathcal{L}$ to $S$ is ample, then for some $i \in I$ the pullback $\mathcal{L}_ i$ to $S_ i$ is ample.

**Proof.**
The assumption means there are finitely many sections $s_1, \ldots , s_ m \in \Gamma (S, \mathcal{L})$ such that $S_{s_ j}$ is affine and such that $S = \bigcup S_{s_ j}$, see Properties, Definition 27.26.1. By Lemma 31.4.7 we can find an $i \in I$ and sections $s_{i, j} \in \Gamma (S_ i, \mathcal{L}_ i)$ mapping to $s_ j$. By Lemma 31.4.13 we may, after increasing $i$, assume that $(S_ i)_{s_{i, j}}$ is affine for $j = 1, \ldots , m$. By Lemma 31.4.11 we may, after increasing $i$ a last time, assume that $S_ i = \bigcup (S_ i)_{s_{i, j}}$. Then $\mathcal{L}_ i$ is ample by definition.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)