Lemma 67.45.12. Let S be a scheme. Let f : X \to Y and g : Y \to Z be morphisms of algebraic spaces over S.
If g \circ f is finite and g separated then f is finite.
If g \circ f is integral and g separated then f is integral.
Lemma 67.45.12. Let S be a scheme. Let f : X \to Y and g : Y \to Z be morphisms of algebraic spaces over S.
If g \circ f is finite and g separated then f is finite.
If g \circ f is integral and g separated then f is integral.
Proof. Assume g \circ f is finite (resp. integral) and g separated. The base change X \times _ Z Y \to Y is finite (resp. integral) by Lemma 67.45.5. The morphism X \to X \times _ Z Y is a closed immersion as Y \to Z is separated, see Lemma 67.4.7. A closed immersion is finite (resp. integral), see Lemma 67.45.10. The composition of finite (resp. integral) morphisms is finite (resp. integral), see Lemma 67.45.4. Thus we win. \square
Comments (0)