Lemma 76.34.2. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Assume $f$ is quasi-finite and separated. Let $Y'$ be the normalization of $Y$ in $X$. Picture:

$\xymatrix{ X \ar[rd]_ f \ar[rr]_{f'} & & Y' \ar[ld]^\nu \\ & Y & }$

Then $f'$ is a quasi-compact open immersion and $\nu$ is integral. In particular $f$ is quasi-affine.

Proof. This follows from Lemma 76.34.1. Namely, by that lemma there exists an open subspace $U' \subset Y'$ such that $(f')^{-1}(U') = X$ (!) and $X \to U'$ is an isomorphism! In other words, $f'$ is an open immersion. Note that $f'$ is quasi-compact as $f$ is quasi-compact and $\nu : Y' \to Y$ is separated (Morphisms of Spaces, Lemma 67.8.9). Hence for every affine scheme $Z$ and morphism $Z \to Y$ the fibre product $Z \times _ Y X$ is a quasi-compact open subscheme of the affine scheme $Z \times _ Y Y'$. Hence $f$ is quasi-affine by definition. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 082J. Beware of the difference between the letter 'O' and the digit '0'.