The Stacks project

18.24 Basic results on local types of modules

Basic lemmas related to the definitions made above.

Lemma 18.24.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\theta : \mathcal{G} \to \mathcal{F}$ be a surjective $\mathcal{O}$-module map with $\mathcal{F}$ of finite presentation and $\mathcal{G}$ of finite type. Then $\mathop{\mathrm{Ker}}(\theta )$ is of finite type.

Proof. Omitted. Hint: See Modules, Lemma 17.11.3. $\square$

Lemma 18.24.2. Let $\mathcal{C}$ be a category viewed as a site with the chaotic topology, see Sites, Example 7.6.6. Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$ and let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules. Then $\mathcal{F}$ is quasi-coherent if and only if for all $U \to V$ in $\mathcal{C}$ the canonical map

\[ \mathcal{F}(V) \otimes _{\mathcal{O}(V)} \mathcal{O}(U) \longrightarrow \mathcal{F}(U) \]

is an isomorphism.

Proof. Assume $\mathcal{F}$ is quasi-coherent and let $U \to V$ be a morphism of $\mathcal{C}$. Since every covering of $V$ is given by an isomorphism we conclude from Definition 18.23.1 that there exists a presentation

\[ \bigoplus \nolimits _{j \in J} \mathcal{O}_ V \longrightarrow \bigoplus \nolimits _{i \in I} \mathcal{O}_ V \longrightarrow \mathcal{F}|_{\mathcal{C}/V} \longrightarrow 0 \]

Since the topology on $\mathcal{C}$ is chaotic, taking sections over any object of $\mathcal{C}$ is exact. We conclude that we obtain a presentation

\[ \bigoplus \nolimits _{j \in J} \mathcal{O}(V) \longrightarrow \bigoplus \nolimits _{i \in I} \mathcal{O}(V) \longrightarrow \mathcal{F}(V) \longrightarrow 0 \]

of $\mathcal{F}(V)$ as an $\mathcal{O}(V)$-module and similarly for $\mathcal{F}(U)$. This easily shows that the displayed map in the statement of the lemma is an isomorphism.

Assume the displayed map in the statement of the lemma is an isomorphism for every morphism $U \to V$ in $\mathcal{C}$. Fix $V$ and choose a presentation

\[ \bigoplus \nolimits _{j \in J} \mathcal{O}(V) \longrightarrow \bigoplus \nolimits _{i \in I} \mathcal{O}(V) \longrightarrow \mathcal{F}(V) \longrightarrow 0 \]

of $\mathcal{F}(V)$ as an $\mathcal{O}(V)$-module. Then the assumption on $\mathcal{F}$ exactly means that the corresponding sequence

\[ \bigoplus \nolimits _{j \in J} \mathcal{O}_ V \longrightarrow \bigoplus \nolimits _{i \in I} \mathcal{O}_ V \longrightarrow \mathcal{F}|_{\mathcal{C}/V} \longrightarrow 0 \]

is exact and we conclude that $\mathcal{F}$ is quasi-coherent. $\square$

Lemma 18.24.3. Let $\mathcal{C}$ be a category viewed as a site with the chaotic topology, see Sites, Example 7.6.6. Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$. Assume for all $U \to V$ in $\mathcal{C}$ the restriction map $\mathcal{O}(V) \to \mathcal{O}(U)$ is a flat ring map. Then the category of quasi-coherent $\mathcal{O}$-modules is a weak Serre subcategory of $\textit{Mod}(\mathcal{O})$.

Proof. We will check the definition of a weak Serre subcategory, see Homology, Definition 12.10.1. To do this we will use the characterization of quasi-coherent modules given in Lemma 18.24.2. Consider an exact sequence

\[ \mathcal{F}_0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to \mathcal{F}_4 \]

in $\textit{Mod}(\mathcal{O})$ with $\mathcal{F}_0$, $\mathcal{F}_1$, $\mathcal{F}_3$, and $\mathcal{F}_4$ quasi-coherent. Let $U \to V$ be a morphism of $\mathcal{C}$ and consider the commutative diagram

\[ \xymatrix{ \mathcal{F}_0(V) \otimes _{\mathcal{O}(V)} \mathcal{O}(U) \ar[r] \ar[d] & \mathcal{F}_1(V) \otimes _{\mathcal{O}(V)} \mathcal{O}(U) \ar[r] \ar[d] & \mathcal{F}_2(V) \otimes _{\mathcal{O}(V)} \mathcal{O}(U) \ar[r] \ar[d] & \mathcal{F}_3(V) \otimes _{\mathcal{O}(V)} \mathcal{O}(U) \ar[r] \ar[d] & \mathcal{F}_4(V) \otimes _{\mathcal{O}(V)} \mathcal{O}(U) \ar[d] \\ \mathcal{F}_0(U) \ar[r] & \mathcal{F}_1(U) \ar[r] & \mathcal{F}_2(U) \ar[r] & \mathcal{F}_3(U) \ar[r] & \mathcal{F}_4(U) } \]

By assumption the vertical arrows with indices $0$, $1$, $3$, $4$ are isomorphisms. Since the topology on $\mathcal{C}$ is chaotic taking sections over an object of $\mathcal{C}$ is exact and hence the lower row is exact. Since $\mathcal{O}(V) \to \mathcal{O}(U)$ is flat also the upper row is exact. Thus we conclude that the middle arrow is an isomorphism by the $5$ lemma (Homology, Lemma 12.5.20). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 082S. Beware of the difference between the letter 'O' and the digit '0'.