Lemma 71.7.3. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $D_1$, $D_2$ be effective Cartier divisors on $X$. Let $D = D_1 + D_2$. Then there is a unique isomorphism
\[ \mathcal{O}_ X(D_1) \otimes _{\mathcal{O}_ X} \mathcal{O}_ X(D_2) \longrightarrow \mathcal{O}_ X(D) \]
which maps $1_{D_1} \otimes 1_{D_2}$ to $1_ D$.
Comments (0)