Lemma 70.16.2. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Let $\mathcal{A}$ be a quasi-coherent graded $\mathcal{O}_ X$-algebra. Let $\pi : P = \underline{\text{Proj}}_ X(\mathcal{A}) \to X$ be the relative Proj of $\mathcal{A}$. Let $i : Z \to P$ be a closed subscheme. If $\pi $ is quasi-compact and $i$ of finite presentation, then there exists a $d > 0$ and a quasi-coherent finite type $\mathcal{O}_ X$-submodule $\mathcal{F} \subset \mathcal{A}_ d$ such that $Z = \underline{\text{Proj}}_ X(\mathcal{A}/\mathcal{F}\mathcal{A})$.

**Proof.**
The reader can redo the arguments used in the case of schemes. However, we will show the lemma follows from the case of schemes by a trick. Let $\mathcal{I} \subset \mathcal{A}$ be the quasi-coherent graded ideal cutting out $Z$ of Lemma 70.16.1. Choose an affine scheme $U$ and a surjective étale morphism $U \to X$, see Properties of Spaces, Lemma 65.6.3. By the case of schemes (Divisors, Lemma 31.31.4) there exists a $d > 0$ and a quasi-coherent finite type $\mathcal{O}_ U$-submodule $\mathcal{F}' \subset \mathcal{I}_ d|_ U \subset \mathcal{A}_ d|_ U$ such that $Z \times _ X U$ is equal to $\underline{\text{Proj}}_ U(\mathcal{A}|_ U/\mathcal{F}'\mathcal{A}|_ U)$. By Limits of Spaces, Lemma 69.9.2 we can find a finite type quasi-coherent submodule $\mathcal{F} \subset \mathcal{I}_ d$ such that $\mathcal{F}' \subset \mathcal{F}|_ U$. Let $Z' = \underline{\text{Proj}}_ X(\mathcal{A}/\mathcal{F}\mathcal{A})$. Then $Z' \to P$ is a closed immersion (Lemma 70.12.5) and $Z \subset Z'$ as $\mathcal{F}\mathcal{A} \subset \mathcal{I}$. On the other hand, $Z' \times _ X U \subset Z \times _ X U$ by our choice of $\mathcal{F}$. Thus $Z = Z'$ as desired.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)