Lemma 71.17.9. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $b : X' \to X$ be a blowup of $X$ in a closed subspace. For any effective Cartier divisor $D$ on $X$ the pullback $b^{-1}D$ is defined (see Definition 71.6.10).
Proof. By Lemmas 71.17.2 and 71.6.2 this reduces to the following algebra fact: Let $A$ be a ring, $I \subset A$ an ideal, $a \in I$, and $x \in A$ a nonzerodivisor. Then the image of $x$ in $A[\frac{I}{a}]$ is a nonzerodivisor. Namely, suppose that $x (y/a^ n) = 0$ in $A[\frac{I}{a}]$. Then $a^ mxy = 0$ in $A$ for some $m$. Hence $a^ my = 0$ as $x$ is a nonzerodivisor. Whence $y/a^ n$ is zero in $A[\frac{I}{a}]$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: