The Stacks project

Lemma 71.18.2 (Étale localization and strict transform). In the situation of Definition 71.18.1. Let

\[ \xymatrix{ U \ar[r] \ar[d] & X \ar[d] \\ V \ar[r] & B } \]

be a commutative diagram of morphisms with $U$ and $V$ schemes and étale horizontal arrows. Let $V' \to V$ be the blowup of $V$ in $Z \times _ B V$. Then

  1. $V' = V \times _ B B'$ and the maps $V' \to B'$ and $U \times _ V V' \to X \times _ B B'$ are étale,

  2. the strict transform $U'$ of $U$ relative to $V' \to V$ is equal to $X' \times _ X U$ where $X'$ is the strict transform of $X$ relative to $B' \to B$, and

  3. for a quasi-coherent $\mathcal{O}_ X$-module $\mathcal{F}$ the restriction of the strict transform $\mathcal{F}'$ to $U \times _ V V'$ is the strict transform of $\mathcal{F}|_ U$ relative to $V' \to V$.

Proof. Part (1) follows from the fact that blowup commutes with flat base change (Lemma 71.17.3), the fact that étale morphisms are flat, and that the base change of an étale morphism is étale. Part (3) then follows from the fact that taking the sheaf of sections supported on a closed commutes with pullback by étale morphisms, see Limits of Spaces, Lemma 70.14.5. Part (2) follows from (3) applied to $\mathcal{F} = \mathcal{O}_ X$. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 71.18: Strict transform

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0863. Beware of the difference between the letter 'O' and the digit '0'.