The Stacks project

Proposition 70.11.7. Let $S$ be a scheme. $f : X \to Y$ be a morphism of algebraic spaces over $S$. Assume

  1. $f$ is of finite type and separated, and

  2. $Y$ is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation $f' : X' \to Y$ and a closed immersion $X \to X'$ over $Y$.

Proof. By Lemma 70.11.6 there is a closed immersion $X \to Z$ with $Z/Y$ of finite presentation. Let $\mathcal{I} \subset \mathcal{O}_ Z$ be the quasi-coherent sheaf of ideals defining $X$ as a closed subscheme of $Y$. By Lemma 70.9.2 we can write $\mathcal{I}$ as a directed colimit $\mathcal{I} = \mathop{\mathrm{colim}}\nolimits _{a \in A} \mathcal{I}_ a$ of its quasi-coherent sheaves of ideals of finite type. Let $X_ a \subset Z$ be the closed subspace defined by $\mathcal{I}_ a$. These form an inverse system indexed by $A$. The transition morphisms $X_ a \to X_{a'}$ are affine because they are closed immersions. Each $X_ a$ is quasi-compact and quasi-separated since it is a closed subspace of $Z$ and $Z$ is quasi-compact and quasi-separated by our assumptions. We have $X = \mathop{\mathrm{lim}}\nolimits _ a X_ a$ as follows directly from the fact that $\mathcal{I} = \mathop{\mathrm{colim}}\nolimits _{a \in A} \mathcal{I}_ a$. Each of the morphisms $X_ a \to Z$ is of finite presentation, see Morphisms, Lemma 29.21.7. Hence the morphisms $X_ a \to Y$ are of finite presentation. Thus it suffices to show that $X_ a \to Y$ is separated for some $a \in A$. This follows from Lemma 70.5.13 as we have assumed that $X \to Y$ is separated. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0873. Beware of the difference between the letter 'O' and the digit '0'.