The Stacks project

Lemma 76.38.1. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Let $\varphi : W \to X$ be a quasi-compact separated étale morphism. Let $U \subset X$ be a quasi-compact open subspace. Let $\mathcal{I} \subset \mathcal{O}_ W$ be a finite type quasi-coherent sheaf of ideals such that $V(\mathcal{I}) \cap \varphi ^{-1}(U) = \emptyset $. Then there exists a finite type quasi-coherent sheaf of ideals $\mathcal{J} \subset \mathcal{O}_ X$ such that

  1. $V(\mathcal{J}) \cap U = \emptyset $, and

  2. $\varphi ^{-1}(\mathcal{J})\mathcal{O}_ W = \mathcal{I} \mathcal{I}'$ for some finite type quasi-coherent ideal $\mathcal{I}' \subset \mathcal{O}_ W$.

Proof. Choose a factorization $W \to Y \to X$ where $j : W \to Y$ is a quasi-compact open immersion and $\pi : Y \to X$ is a finite morphism of finite presentation (Lemma 76.34.4). Let $V = j(W) \cup \pi ^{-1}(U) \subset Y$. Note that $\mathcal{I}$ on $W \cong j(W)$ and $\mathcal{O}_{\pi ^{-1}(U)}$ glue to a finite type quasi-coherent sheaf of ideals $\mathcal{I}_1 \subset \mathcal{O}_ V$. By Limits of Spaces, Lemma 70.9.8 there exists a finite type quasi-coherent sheaf of ideals $\mathcal{I}_2 \subset \mathcal{O}_ Y$ such that $\mathcal{I}_2|_ V = \mathcal{I}_1$. In other words, $\mathcal{I}_2 \subset \mathcal{O}_ Y$ is a finite type quasi-coherent sheaf of ideals such that $V(\mathcal{I}_2)$ is disjoint from $\pi ^{-1}(U)$ and $j^{-1}\mathcal{I}_2 = \mathcal{I}$. Denote $i : Z \to Y$ the corresponding closed immersion which is of finite presentation (Morphisms of Spaces, Lemma 67.28.12). In particular the composition $\tau = \pi \circ i : Z \to X$ is finite and of finite presentation (Morphisms of Spaces, Lemmas 67.28.2 and 67.45.4).

Let $\mathcal{F} = \tau _*\mathcal{O}_ Z$ which we think of as a quasi-coherent $\mathcal{O}_ X$-module. By Descent on Spaces, Lemma 74.6.7 we see that $\mathcal{F}$ is a finitely presented $\mathcal{O}_ X$-module. Let $\mathcal{J} = \text{Fit}_0(\mathcal{F})$. (Insert reference to fitting modules on ringed topoi here.) This is a finite type quasi-coherent sheaf of ideals on $X$ (as $\mathcal{F}$ is of finite presentation, see More on Algebra, Lemma 15.8.4). Part (1) of the lemma holds because $|\tau |(|Z|) \cap |U| = \emptyset $ by our choice of $\mathcal{I}_2$ and because the $0$th Fitting ideal of the trivial module equals the structure sheaf. To prove (2) note that $\varphi ^{-1}(\mathcal{J})\mathcal{O}_ W = \text{Fit}_0(\varphi ^*\mathcal{F})$ because taking Fitting ideals commutes with base change. On the other hand, as $\varphi : W \to X$ is separated and étale we see that $(1, j) : W \to W \times _ X Y$ is an open and closed immersion. Hence $W \times _ Y Z = V(\mathcal{I}) \amalg Z'$ for some finite and finitely presented morphism of algebraic spaces $\tau ' : Z' \to W$. Thus we see that

\begin{align*} \text{Fit}_0(\varphi ^*\mathcal{F}) & = \text{Fit}_0((W \times _ Y Z \to W)_*\mathcal{O}_{W \times _ Y Z}) \\ & = \text{Fit}_0(\mathcal{O}_ W/\mathcal{I}) \cdot \text{Fit}_0(\tau '_*\mathcal{O}_{Z'}) \\ & = \mathcal{I} \cdot \text{Fit}_0(\tau '_*\mathcal{O}_{Z'}) \end{align*}

the second equality by More on Algebra, Lemma 15.8.4 translated in sheaves on ringed topoi. Setting $\mathcal{I}' = \text{Fit}_0(\tau '_*\mathcal{O}_{Z'})$ finishes the proof of the lemma. $\square$


Comments (2)

Comment #6478 by on

In the third line, when is chosen to be an ideal in , maybe it should say instead.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 087B. Beware of the difference between the letter 'O' and the digit '0'.